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Abstract: An accurate fault location algorithm based on application of artificial neural networks (ANN) for protection of double 
circuit transmission lines is presented in this research paper. The proposed method uses the magnitude and phase angle of 
current available at only the local end of line. This method is adaptive to the variation of fault resistance, fault inception angle 
and fault location. The Simulation results show that all types of phase-to-phase and phase-to-ground faults can be correctly 
located under varying system conditions. Large numbers of fault simulations using MATLAB/Simulink software has proved the 
accuracy and effectiveness of the proposed algorithm.  
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I. INTRODUCTION 
Double circuit transmission lines increase the power transmission capability and reliability of the power system hence it is most 
widely used. However, the fault location of double circuit lines becomes more difficult and complex than a single circuit line due to 
the effect of mutual coupling among the circuits. When the fault location algorithm used for single lines is directly used for double 
circuit lines, which is often the case in practice, the fault location estimation accuracy can’t be guaranteed because of the mutual 
coupling effect. Therefore a dedicated fault location algorithm has to be developed for the double circuit transmission lines. 
Various fault location algorithms on double circuit transmission lines have been proposed [1-8]. A distributed parameter model-
based fault location algorithm was proposed in [1] and it uses two-terminal voltages and currents and does not require the source 
impedance and fault resistance. Another researcher proposed a novel time-domain fault location algorithm that uses a differential 
component net by using two terminal currents [2]. Although two-terminal algorithms may present a better performance but single-
terminal algorithms have advantages from the commercial viewpoint. This is mainly due to the additional complexity associated 
with two ends algorithms including communication and synchronization between both ends as well as the cost increases. Therefore, 
more researches focused on the application of the single end method so far. A practical fault location approach depending on modal 
transformation is using single end data of the double circuit transmission lines was proposed in [3]. A least error squares method for 
locating fault on coupled double-circuit HV transmission line are using one terminal data [4]. An accurate fault location algorithm 
on two-parallel transmission lines for both single phase-to-ground fault  [5] and non-earth fault using one terminal data [6] were 
proposed by researchers. A new approach based on artificial neural networks using the fundamental components of the fault and 
pre-fault voltage and current magnitudes of the reference end also has been presented in [7]. More accurate fault location algorithm 
for double-circuit transmission systems that uses a current distribution factor in order to estimate the fault current using the voltage 
and current collected at only the local end of a single-circuit is proposed [8]. Faulty phase selection and distance location using 
neural network for single circuit transmission lines has been reported in [9]. Fault classification for double-circuit lines using self 
organization mapping feature neural network is presented in [10], however it does not locate the faults. The work presented in [11] 
deals with the compensation of fault resistance using ANN for determination of location of fault. A single line to ground fault 
location method employing wavelet fuzzy neural network in the distribution lines of an industrial system is proposed in [12], other 
types of fault have not been considered. An adaptive distance protection of double circuit line using zero sequence Thevenin 
equivalent impedance and compensation factor for mutual coupling is presented in [13]. The work presented in [14] deals with 
combined Wavelet and ANN approach for fault location in double circuit transmission lines. Negative-Sequence voltage magnitude 
has been used for Unsynchronized Fault Location for Double-Circuit Transmission Lines in [15]. This paper proposes an enhanced 
algorithm to determine the fault location on double-circuit transmission line for all possible types of shunt fault. The proposed 
algorithm uses the magnitude and phase angles of current signals of each phase of the two parallel lines at one end only. Its 
effectiveness has been tested on a double-circuit transmission system through various simulations using MATLAB. Simulation 
results of the proposed algorithm have shown its accuracy of the fault location in all cases considered. 
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II. POWER SYSTEM NETWORK SIMULATION 
The power system network studied is composed of 220KV, 50 Hz, 100km double-circuit transmission lines, connected to a source at 
each end, as shown in Fig. 1. All components of the power system network are modeled by the MATLAB ® Simulink & 
SimPowerSystem toolbox. The transmission line is simulated using distributed parameter line model. The Short circuit rating of the 
equivalent Thevenin sources on two sides of the line are considered to be 1.25 GVA with X/R ratio 10 and source to line impedance 
ratio is 0.5. The double circuit transmission line parameters are shown in Table-1. 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Single line diagram of power system model under study 

 

 
 
 
 
 
 
 

 

Table 1: Double circuit transmission line parameters 

III. ANN BASED FAULT DISTANCE LOCATOR 
The basic procedure used to implement a neural network for the fault detection and classification algorithm in double circuit 
transmission line is described below. 

A. Selecting the right architecture 
The main factor in determining the right size and structure for the neural network is the number of inputs and outputs that it must 
have. To enable the method to be implemented in both fault detection and classification, the magnitude and phase angles of each 
current signals recorded at the relay location are extracted by using discrete Fourier transform and the difference between maximum 
phase angle and minimum phase angle for each current signals are calculated as given below: 

																																																																								θ୫ୟ୶	 = 	max	{θ(1),	θ(2), . . . , θ(m)}                                                                       (1) 
																																																																								θ୫୧୬ 	= 	min	{θ(1),	θ(2), . . . , θ(m)}                                                                        (2) 

                                                                      ΔФ = 	Φ୫ୟ୶	– 	Φ୫୧୬                                                                                                 (3) 
Where θ୫ୟ୶	and θ୫୧୬	are	the	maximum and minimum phase angle out of m samples for current signals of the corresponding 
phases.	Hence the neural network inputs chosen here are the magnitude and changes in the phase angles of six currents measured at 
the relay location. Thus the network inputs for fault locator are total twelve as given in (4).  
                                  X = [ΔΦA1, ΔΦB1, ΔΦC1, ΔΦA2, ΔΦB2, ΔΦC2, IA1, IB1, IC1, IA2, IB2, IC2]                    (4) 

Components Parameters 
 
 
 

Transmission 
line 

 

Length (km) 100 
Voltage (kV) 220 

Positive sequence impedance (Ω/km) 0.0181 +  j0.292 
Zero sequence impedance (Ω/km) 0.2188 +  j1.031 

Zero sequence mutual impedance (Ω/km) 0.20052 + j0.6535 
Positive sequence capacitance (nF/km) 12.571 

Zero sequence capacitance (nF/km) 7.8555 
Zero sequence mutual capacitance (nF/km) -2.0444 
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As the basic task of fault location is to determine the distance to the fault. Therefore fault distance in km with regard to the total 
length of the line, should be the only output provided by the fault location network. Thus the output Y for the fault location network 
is given as in (5).                                            

    Y = [Lf]                                                                  (5) 

B. Training Dataset Generation 
Training dataset of ANN consist of input and corresponding target dataset. To get the input the power system model is simulated at 
different location, inception angle and resistance in MATLAB. Table 2 gives the various combinations of fault types and parameters 
for input pattern generation.  

 
 
 
 

 

 

 
Table 2: Training Data Pattern Generation 

C. Training of Fault Locator 
The network for fault locator is trained using “Levenberg Marquard Algorithm”. The goal achieved is shown as the minimum 
number of root mean square error meets after a significant number of iteration. The number of hidden layer neurons and transfer 
function is chosen based on the “trial and error” method.  
1) Training for LG Fault 

Here two hidden layer of 35 and 30 neuron in first and second hidden layers respectively and ‘logsig’ transfer function is used 
for both hidden layer and ‘purelin’ transfer function is used for output layer that gives the best performance as shown in Fig. 2. The 
network of fault locator is multi layered feed forward ANN with 12 neurons in the input layer, 35 neuron in first hidden layer, 30 
neuron in second hidden layer and 1 neuron in output layer (12-35-30-1) is capable of minimizing the mean square errors (MSE) to 
a goal of 9.94* 10-06 in 282 epochs as shown in Fig. 3.  

 
 

 

 

 

 

Figure 2: Architecture of ANN Based LG Fault Locato          Figure 3: ANN training performance (MSE) for LG Fault 
Locator 

2) Training for LLG Fault 

Parameters Set Value 
Type of Faults 

(4) 
A1G, B1G, C1G, A2G, B2G, C2G, A1B1G, B1 C1G, A1C1G, A2B2G, 

B2C2G, A2C2G, A1B1, B1C1, A1C1, A2B2, B2C2, A2C2, A1B1C1, A2B2C2 
Fault Location 

(11) 
1, 4, 8, 13, 20, 35, 48, 59, 73, 87, 99 

Fault Resistance 
(4) 

1,60,120,180 Ω (for ground fault) 
& 0 Ω (for phase fault) 

Fault Inception Angle (2) 0º & 90º 
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Here three hidden layer of 26, 12 and 10 neuron in first, second and third hidden layers respectively and ‘logsig’ transfer function is 
used for both hidden layer and ‘purelin’ transfer function is used for output layer that gives the best performance as shown in Fig. 4. 
The network of fault locator is multi layered feed forward ANN with 12 neurons in the input layer, 26 neuron in first hidden layer, 
12 neuron in second hidden layer, 10 neuron in third hidden layer and 1 neuron in output layer (12-26-12-10-1) is capable of 
minimizing the mean square errors (MSE) to a goal of 9.85* 10-07 in 261 epochs as shown in Fig. 5.  

 
Figure 4: Architecture of ANN Based LLG Fault Locator  Figure 5: ANN training performance (MSE) for LLG Fault 

Locator 
3) Training for LL Fault 
Here two hidden layer of 36 and 32 neuron in first and second hidden layers respectively and ‘logsig’ transfer function is used for 
both hidden layer and ‘purelin’ transfer function is used for output layer that gives the best performance as shown in Fig. 6. The 
network of fault locator is multi layered feed forward ANN with 12 neurons in the input layer, 36 neuron in first hidden layer, 32 
neuron in second hidden layer and 1 neuron in output layer (12-36-32-1) is capable of minimizing the mean square errors (MSE) to 
a goal of 9.19* 10-12 in 124 epochs as shown in Fig. 7.  

 
 
 
 
 
 
 
 
 
 
Figure 6: Architecture of ANN Based LL Fault Locator         Figure 7: ANN training performance (MSE) for LL Fault Locator 
 

4) Training for LLL Fault 
Here two hidden layer of 35 and 30 neuron in first and second hidden layers respectively and ‘logsig’ transfer function is used for 
both hidden layer and ‘purelin’ transfer function is used for output layer that gives the best performance as shown in Fig. 8. The 
network of fault locator is multi layered feed forward ANN with 12 neurons in the input layer, 35 neuron in first hidden layer, 30 
neuron in second hidden layer and 1 neuron in output layer (12-35-30-1) is capable of minimizing the mean square errors (MSE) to 
a goal of 2.03* 10-13 in 5 epochs as shown in Fig. 9.  
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Figure 8: Architecture of ANN Based LLL Fault Locator                 Figure 9: ANN training performance (MSE) for LLL Fault 
Locator 

IV. TEST RESULTS OF ANN BASED FAULT LOCATOR 
After training the networks of all phase to phase and phase to ground faults, we need to test the trained network to check networks 
are properly trained or not. Test dataset is generated at different fault parameter which is not used during training pattern generation. 
At various locations all types of phase faults and ground faults were tested to find out the maximum deviation of the estimated 
distance Lf measured from the relay location and the actual fault location La. The estimated error is expressed as a percentage of 
total line length as given in equation (6). 

         % Error =		୅ୡ୲୳ୟ୪	୐୭ୡୟ୲୧୭୬	–୉ୱ୲୧୫ୟ୲ୣୢ	୪୭ୡୟ୲୧୭୬
୘୭୲ୟ୪	୪୧୬ୣ	୪ୣ୬୥୲୦

× 100                (6) 

After training, the ANN based Fault detector and Fault classifier was then extensively tested using independent data sets consisting 
of fault scenarios which were never used previously in the training process. For different faults cases of the test data set, fault type, 
fault location, fault resistance and fault inception angle were changed to investigate the effects of these factors on the performance 
of the proposed protection algorithm. The network was tested and performance was validated by presenting all types of fault cases 
with varying fault locations (Lf = 0-99.5KM), fault resistances (Rf = 0-179Ω) and fault inception angles (Φi = 0-360°). The test 
results of ANN based Fault Locator for ground faults and for phase faults are given in Table 3 and 4. It is clear from the table that 
the estimated location is approximately same as actual fault location for both phase faults and ground faults and the ANN output is 
immune to the changes in varying system parameters. The maximum and minimum percentage errors of the test result for ground 
faults are 0.9943% and 0.0120% respectively. The maximum and minimum percentage errors of the test result for phase faults are 
0.9963% and 0.00% respectively. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3: Test results of ANN based Fault Locator for Ground Faults 

Fault 
Type 

Fault 
Resistance 

Rf 

(ohm) 

Fault 
Inception 

angle 
Φi (deg) 

Actual 
Fault 

Location  
Lf (in km) 

 
ANN Output 

(in km) 

 
% Error 

A1G 1 0 2 2.1531 0.1531 
B1G 50 60 25 24.0704 0.0704 
C1G 70 150 34 34.8064 0.8064 
A2G 100 210 56 56.9943 0.9943 
B2G 150 300 80 79.7075 0.7075 
C2G 179 360 99 99.2460 0.2460 

A1B1G 1 0 2 2.1928 0.1928 
A1C1G 50 60 25 25.6647 0.6647 
B1C1G 80 150 34 34.9517 0.9517 
A2B2G 100 210 56 56.5763 0.5763 
B2C2G 150 300 80 80.0120 0.0120 
A2C2G 179 360 99 99.2491 0.2491 
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Table 4: Test results of ANN based Fault Locator for Phase Faults 

V. CONCLUSIONS 
This paper presents new approaches for the ANN based fault location in double circuit transmission line using only one terminal 
data, which can be used in the digital protection of the double circuit power transmission system. These approaches are based on 
magnitude and changes in the phase angle of current signals of each phase of both the circuits which is given as input to the artificial 
neural network for fault location task. The protection scheme effectively eliminates the effect of varying fault resistance, fault 
location and fault inception angle. The performance of the proposed protection scheme has been investigated by a number of offline 
tests considering all possible types of faults with varying fault resistance Rf (0-179 Ω), fault locations Lf (0-99.5 km) and fault 
inception angles Φi (0-360°).Test results show that the fault location algorithm proposed can be used to very support a new 
generation of protection relay systems at high speed. These advantages make the proposed techniques extremely suitable for online 
and supervised location of faults with high fidelity in large-scale power systems. 
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