Experimental Investigation of Glass Fibre Oriented Reinforced Polymer Laminates

V Dushyanth Kumar¹, Y Seetha Ramarao², VVS Prasad³

¹PG Student, Department of Mechanical Engineering, GVP College of Engineering, Visakhapatnam, Andhra Pradesh, India.
²Associate Professor, Department of Mechanical Engineering, GVP College of Engineering, Visakhapatnam, Andhra Pradesh, India.
³Professor, Department of Marine Engineering, AU College of Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India.

Abstract: To know the mechanical properties of GFRP laminates. Using hand lay-up and press moulding fabrication techniques, the testing samples are prepared as per ASTM-D882, ASTM-D790, ASTM-D785 standard by varying orientation. These specimens are tested under tensile test, flexural test (three-point bend test) and hardness test. The results are compared within three different aligned orientations (0°, 135°, 90°) for fabricated composite. GFRP laminates have wide spread application because of their several advantages like high wear resistance, high strength-to-weight ratio. The results of tensile strength, percentage elongation, flexural strength, flexural modulus and hardness of the composite were compared. However, the highest values respectively suggesting fibre orientation for effective and maximum stress transfer in laminated composites. The unknown properties obtained by these laminates are used in ABAQUS and HYPERMESH for analysis. The results are compared to obtain the better of the orientations suitable for the composite to manufacture any components.

Keywords: Glass fibre reinforced polymer (GFRP), Hand lay-up Technique, Mechanical properties, ABAQUS, Hypermesh.

I. INTRODUCTION

Reinforcement materials like fibres, fillers, particles and flakes that surrounded in a matrix (resin) for example polyester, epoxy, and vinyl ester to fabricate composites. The resin holds the fibres together to create products with any shape and transfer the applied load to the fibres. Most of the applied loads are taken by the fibres. The mechanical properties are different in different directions while the mechanical properties are same in any direction in isotropic materials. However, fibre reinforced polymers are directional materials or in other words, the optimum mechanical properties are in the direction of reinforcement. Therefore, the fibres are placed in the composite materials according to the applied load. Also, the type and direction of reinforcements are selected according to the application.

II. METHODOLOGY AND EXPERIMENTATION

Laminates are prepared by using hand lay-up technique varying orientation (0°/0°, 0°/135°, 0°/90°) of the fibre and number of glass layers are constant. The testing samples are prepared as per the ASTM Standards. During the experimentation tests of tensile (ASTM-D 882), flexural (ASTM-D 790) and Hardness (ASTM-D 785) are done on the GFRP laminates of different orientations. The Analysis was carried out in framework of ABAQUS and HyperMesh FEA packages, the objective of this FEA analysis of Polymer laminates is to predict the mechanical properties and their response of the polymer laminates such as tensile and flexural then the results will be compared with experimental results. The geometry of the test specimen for HyperMesh Analysis is the same as ABAQUS in dimensions and design. The material constants used in the analysis of the composite laminate are Young’s Modulus $E_1 = 71660.0$ MPa, Young’s Modulus $E_2 = 20700.0$ MPa, Poisson’s Ratio for the given material is $\nu_{12} = 0.244$, Shear Modulus of the given material are $G_{12} = 10690.0$ MPa, $G_{1Z} = 10690.0$ MPa, $G_{2Z} = 11000$ MPa and density 2.6e -24 kg-m3. The following Fig.1 shows the model of the experimental in ABAQUS.
The composite layups of the tested specimens during the experimentation are defined in the composite layup module in ABAQUS. The following Fig. 2 shows the composite layup in ABAQUS.

The boundary condition (BC) and load must be defined and will be activated during the Analysis. The Analysis was set to run with three different orientations and calibration was done to get close results to the experimental results. The JOB module in the ABAQUS is used to carry out the rest of the analysis to satisfy the experimental analysis. The following procedure for analyzing the composite material in HyperMesh are to create the composite material and property. Applying the BC’s to the model. Performing the job in OPTISTRUCT. Post-process the results to view in Hyper View module. The following figure 3 shows the assigning of the ply properties like thickness and angle of orientation.
III. RESULTS

A. Comparison Of Experimental And FEA Results

1) Flexural Results

Table 1: Comparison of stresses for Experimentation and FEA.

<table>
<thead>
<tr>
<th>S. N</th>
<th>Orientation</th>
<th>Load</th>
<th>Maximum Stresses (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>1</td>
<td>0°/90°</td>
<td>121.5</td>
<td>46.66</td>
</tr>
<tr>
<td>2</td>
<td>0°/135°</td>
<td>342.6</td>
<td>131.58</td>
</tr>
<tr>
<td>3</td>
<td>0°/90°</td>
<td>165.3</td>
<td>63.49</td>
</tr>
</tbody>
</table>

By performing flexural test method, the following results are obtained: 46.66 MPa, 131.58 MPa, 63.49 MPa. The flexural strength for 0°/135° orientation is 131.58 MPa because the fiber is the main load carrying element, so it is more than 0°/0° & 0°/90° orientation composite specimens. The flexural test (3-point bend test) gives a better understanding of the mechanical behavior of the laminated composites. The experimental values are now compared with FEA values. FEA values for the orientations are slightly varied from the experimental values. In FEA, 0°/135° has the highest flexural strength of 133.52 MPa (ABAQUS) and 136.32 MPa (HyperMesh). So this orientation is having the high flexural strength than the other two orientations i.e. (0°/0° & 0°/90°). The type of fiber orientation plays a major role in the determination of the flexural strength of a composite material.

Fig 4: Flexural Analysis in ABAQUS for 0°, 135°, 90°
Fig 5: Flexural Analysis in HyperMesh for 0°, 135°, 90°

Fig 6: Graphical representation for comparison of flexural test

Fig 7: Tensile Analysis in ABAQUS for 0°, 135°, 90°

2) Tensile Results

Table 2: Comparison of stresses for Experimentation and FEA.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Orien</th>
<th>Load</th>
<th>Maximum Stresses (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>1</td>
<td>$0/0^\circ$</td>
<td>4062.4</td>
<td>203.1</td>
</tr>
<tr>
<td>2</td>
<td>$0/135^\circ$</td>
<td>4630.3</td>
<td>123.8</td>
</tr>
<tr>
<td>3</td>
<td>$0/90^\circ$</td>
<td>4241.2</td>
<td>113.0</td>
</tr>
</tbody>
</table>

By performing tensile tests under ASTM-D882 test method, the following results are obtained for GFRP Laminates with different orientation. The results are 203.12MPa, 123.84MPa, 113.07MPa. Tensile test properties for $0^\circ/0^\circ$ orientation shows better value of tensile strength 203.12MPa more than $0^\circ/135^\circ$ and $0^\circ/90^\circ$ orientation composites specimens. FEA results are obtained for the FRP laminates for the orientation of $0^\circ/0^\circ$, $0^\circ/135^\circ$, $0^\circ/90^\circ$. There is minor difference from the experimental values from
experimentation. The comparison of Stresses for the experimental and FEA are shown as graphical representation below. Hence from the comparison of experimentation and FEA values concluded that the orientation with $0^\circ/0^\circ$ is suitable as it is having load carrying capacity more than the other orientations and also other tensile properties are greater in the fibre reinforced polymer composite laminates. Tensile strength of GFRP laminate is affected by the fiber orientation distribution more than by the fiber content ratio.

![Fig 8: Tensile Analysis in HyperMesh for 0°, 135°, 90°](image)

![Fig 9: Graphical representation of comparison of Stresses for tensile test](image)

Table 3: ASTM-D 785 Hardness test Experimental results

<table>
<thead>
<tr>
<th>S.No</th>
<th>Orientation</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0^\circ/0^\circ$</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>$0^\circ/135^\circ$</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>$0^\circ/90^\circ$</td>
<td>62</td>
</tr>
</tbody>
</table>

By Performing hardness test under ASTM-D 785 the following results are obtained 48, 54 and 62. The hardness value for $0^\circ/90^\circ$ orientation is 62 is more than $0^\circ/0^\circ$ & $0^\circ/135^\circ$ orientation composite specimens. However, the hardness values are not compared with FEA values. The strength for the orientation $0^\circ/90^\circ$ is highest when compared to the rest of the orientations.
IV. CONCLUSIONS

The present investigation of GFRP laminates can be used to enhance good mechanical properties, like tensile, flexural and hardness strengths properties. Experiments were conducted on GFRP laminates with different fibre orientations to characterize the mechanical properties. The test results illustrated in the present analysis showed that the mechanical strength of composites can be increased. The capacity of GFRP composite laminate efficiency varies depending on the test variables such as, fibre orientation, resin content and a fabrication technique. Due to the rolling process the strength of this GFRP Laminates can be increased, as well as the surface waviness of the fabricated composite can be reduced in order to reach good surface profile. The FEA Packages ABAQUS and HyperMesh showed partial result values with experimental values, but the values obtained by the ABAQUS are closer to the experimental result than the HyperMesh.

REFERENCES

