Study of Various Automatic EEG Artifact Removal Techniques

Anshul Khattar¹, Dipali Bansal², Rashima Mahajan³

¹PhD Scholar, ECE Department, Manav Rachna International University, Faridabad
²HOD & Professor, ECE Department, Manav Rachna International University, Faridabad
³Associate Professor, ECE Department, Manav Rachna International University, Faridabad

Abstract: In recent researches, Electroencephalography (EEG) gains a widespread popularity. There is maximum probability of artifact with EEG signal because of physical and experimental problems therefore artifact elimination is a central issue during encephalogram recordings. Although many researchers have doing research in this area and developed their own method for artifact elimination like independent component analysis (ICA), average artifact subtraction (AAS), real time independent component analysis (ICA), Recursive Least Squares (RLS) adaptive filter, Spatially Constrained Independent Component Analysis (SCICA), Blind Source Separation and Wavelet Denoising. Sim Kuan Goh, 2017, uses EEG data to project indicators which will act as substitutions for sensing individual’s cerebral activities. These electrical signals contain artifacts which significantly obscure the useful information in the signal. An operative artifact removal technique (ART) which eliminates or reduce the influence of the artifacts. A variety of eight dissimilar and distinctive artifacts which occur practically is examined using this technique. The spatiotemporal-frequency characterizes effects artifacts and offers two solutions. The offered solution prolonged significant independent component analysis to eliminate the artifacts from EEG signal and then by the use of real and synthesized EEG data, these proposed solutions are compared with four EEG ARTs. The result shows that in automatic artifact removal both solutions proposed better spatiotemporal-frequency performance. Two offered ARTs attained a better signal-to-noise ratio in synthesized data and superior clutter-to-signal ratio score for acquired EEG. This study progresses consistent experimental EEG investigation and robust Brain Computer Interface system.

Keywords: Electroencephalography, Adaptive Filter, Artifact, Independent Component Analysis, Artifact Removal Techniques

I. INTRODUCTION

The electroencephalogram (EEG) imitates states of brain allied to the person’s mental condition. Due to the temporal resolution of EEG, it is considered to be an outstanding and extensively used for exploring functioning of human brain. A main difficult in this is the various artifacts occurred in EEG signal like movements of eye, blinks, activity of muscle, heartbeat, line noise, high electrode impedance and meddling from electric devices. [T.Raduntz, 2015]. The elimination of artifact in EEG is essential and becomes problematic if very few eras are there. Artifacts are divided in two categories: Physiological and Non-Physiological. Main causes of occurrence of Physiological artifacts are patient moving the head, Eye blinks, sweating, Eyeball rotation, heart beat and Muscle contraction and the main causes of occurrence of Non-Physiological artifacts are external faults example electrode failure, ventilation and power supply. As Ocular artifacts have same frequency as of EEG signals therefore problematic to identify therefore competent algorithms are required to eliminate the artifacts. [P Bhuvaneswari et al.,2012]. These methods are discussed in Section2

II. RELATED WORK

Many methods are used by researchers for eliminating artifacts like independent component analysis (ICA), average artifact subtraction (AAS), real time independent component analysis (ICA), Recursive Least Squares (RLS) adaptive filter, Spatially Constrained Independent Component Analysis (SCICA), Blind Source Separation and Wavelet Denoising. Sim Kuan Goh, 2017, uses EEG data to project indicators which will act as substitutions for sensing individual’s cerebral activities. These electrical signals contain artifacts which significantly obscure the useful information in the signal. An operative artifact removal technique (ART) which eliminates or reduce the influence of the artifacts. A variety of eight dissimilar and distinctive artifacts which occur practically is examined using this technique. The spatiotemporal-frequency characterizes effects artifacts and offers two solutions. The offered solution prolonged significant independent component analysis to eliminate the artifacts from EEG signal and then by the use of real and synthesized EEG data, these proposed solutions are compared with four EEG ARTs. The result shows that in automatic artifact removal both solutions proposed better spatiotemporal-frequency performance. Two offered ARTs attained a better signal-to-noise ratio in synthesized data and superior clutter-to-signal ratio score for acquired EEG. The result also shows improved artifact processing in time and frequency exploration and idea for other 8 categories of artifacts. This study progresses consistent experimental EEG investigation and robust Brain Computer Interface system.

A. Comparison to other studies this study achieves following advantages:

The spatiotemporal-frequency effect of EEG artifacts which are collected from 8 designed experimental setups are described

Current automated artifact elimination methods in the setup of multiple artifacts by both acquired and synthesized EEG are assessed
Proposed new artifact elimination techniques, for numerous types of artifacts in the multiple artifacts scenarios, which have less restrictive previous supposition on artifact features.

The limitations in their study are:

1) The limitations in their study are
 a) The performance of algorithm was assessed on inadequate data sets.
 b) The parameters were evolved as per visual analysis by EEG specialists, using the True Scan EEG system in which human inaccuracy for the period of this manual examination cannot be overlooked.

Alaa Eldeen M. Helal et al., 2017, proposed extensive method grounded on Template Matching approach with multiple signal-processing tools. The technique was assessed and authenticated on real EEG records and results show this technique has improved competences in routine EEG studies and analysis. The spectral, temporal and frequency features of the extracted segments were evaluated and develop specific, distinct artifact samples for every type. By comparing the dissimilar features to that of the verified EEG windows automatically and eliminate the analogous ones, residual were simply the pure signals. Combining the consequences of all artifact types, altogether performance was 88.09% specificity and 89.438% sensitivity.

2) The limitations in their study are:
 a) More precise classification results were succeed if, for successful system training, an average rating of more than two experts would be considered.
 b) With the same classification rate, the computational exertion can be decreased by down sampling.
 c) By merging the image features with frequency information and by applying non-linear classifiers like support vector machine, the results can be improved.

ZhenYu Wang et al., 2014, state ocular artifact can totally distort EEG data so it’s essential to efficiently eliminate the ocular artifact without any loss of valuable EEG information. They proposed a new method of merging ICA and Auto-Regressive eXogenous (ICA-ARX) to eliminate ocular artifact. ICA persuades a negative effect which is decreased by the use of ARX. ARX construct the multi-models grounded on the corrected signals of ICA and the selected reference EEG before polluted time for every channel, after that the ideal model would be carefully chosen for additional artifact elimination. The algorithm was applied to the simulated as well as the actual EEG recordings and the result shows this method is useful for ocular artifact elimination.

3) The limitations in their study are: Only ARX alteration for fastICA are considered, without examine their performances when various ICA variants are collective with ARX for EOG artifact alteration.

©IJRASET (UGC Approved Journal): All Rights are Reserved
Carlos Guerrero-Mosquera et al., 2009, proposed a technique to eradicate eye movement artifacts (EOG) which is grounded on Independent Component Analysis (ICA) and Recursive Least Squares (RLS). In this algorithm, effective ICA capability of sorting out artifacts from brain waves and the online interference cancellation succeeded by adaptive filtering is combined. The distinct electrodes situated near the eyes are used to record vertical and horizontal movements of eyes, so as to excerpt a reference signal. Every reference input is predicted into ICA field, after that the interference is assessed by the use of RLS algorithm and then in the ICA domain, the assessed interference is deducted from the EEG components. The results obtained from experimental data validates that this methodology is appropriate for eradicating eye movements artifacts. The ideology of given method can be prolonged to various other sources of artifacts as well.

4) The limitations in their study are:
 a) More analysis is required to analyze distortion or association among corrected EEG and original EEG.
 b) Extension of the technique is required to pure on-line scenarios.

P Bhuvaneswari et al. in 2012 said that manual artifact identification takes more time while automatic identification and elimination technique will be fast but there is a risk of data loss. So, a competent algorithm is necessary for detection of artifact. The various methods are analyzed for elimination of artifacts from EEG signals. Result shows that out of analyzed various techniques; Independent Component Analysis is one of the commonly used techniques with high accuracy for detection and elimination of artifact.

Samaneh Valipour et al., 2015, discuss the several existing authenticated presented criteria for considering the competence of the Ocular Artifacts (OA) elimination algorithms. All metrics are measured in the MATLAB. Analysis shows some of these criteria are usually used for both real and simulated signals. The analysis shows that assessment of a simulated signal is easier than a real signal. The result also shows that as real EEG signals are nonstationary in nature, by applying the algorithm on same EEG data, the comparison of one algorithm with another algorithm will be significant.

Ahmed Kareem Abdullah et al., 2014, proposed an automatic artifact removal system which is grounded on a mixing of Stone’s Blind Source Separation (BSS) and inherited algorithm. The proposed hybridization is named as evolutionary Stone’s BSS algorithm (ESBSS). Initially in Stone’s BSS short term half-life and long term half-life parameters are used as constant values, and the variations in these parameters will be disturbing strictly the separated signals. The genetic algorithms are an appropriate method to overwhelm the existing problem by concluding arbitrarily the best half-life parameters in Stone’s BSS. This system automatically extracts the common artifacts for example heart beat and ocular artifacts. No notch filter is used in this system therefore useful information is not loss. The proposed automatic artifact removal system is verified best for sub-Gaussian signal and super-Gaussian signal from brain EEG blended automatically and simultaneously. ESBSS was exposed to accomplish superior than various kinds of blind source separation algorithms as verified in simulated and experimental results. The obtained results of ESBSS algorithm are inspiring and are used to remove other kinds of artifacts.

Vipul D. Sanjana et al., 2015, offered a technique, to identify Ocular Artifact zone and construct reference signal, in which Discrete Wavelet Transform (DWT) is used with Adaptive method. Adaptive Noise canceller is vigorously cancelling Ocular Artifact (OA) from EEG signal by the use of reference and primary channel. DWT is used as filter bank which identifies low frequency zone in which Ocular Artifact is greatly affected. Thresholding procedure is used to eliminate noise in primary way but indecorous selection of threshold value might be responsible for removing true EEG signal. This proposed technique is mixing of two techniques in which appropriate choice of forgetting factor offers outstanding result for OA removal and getting true EEG. The analysis shows that forgetting factor which is near to unity offer good performance to eliminate OA as comparison to Least Mean Square algorithm.

G. Geetha et al., 2012, offers an innovative method for eliminating the artifacts from the EEG signals. Artifacts in EEG are of many types for example line interference, electrooculogram (EOG) and electrocardiogram (ECG). The removal of artifact from EEGs is of significant for each the automatic and visual study of EEG signals. The spatially-Constrained Independent Component Analysis (SCICA) is used to detach the Independent Components from the preliminary EEG signal then Wavelet Denoising technique is used to excerpt the brain activity from eliminated artifacts and lastly the artifacts are anticipated back and deducted from EEG signals so as to obtain clean EEG data. For this otsu thresholding technique is used to defining the artifacts. The experimental results illustrates that this method is better for elimination of artifacts than other existing methods.

M. Chavez et al., 2017, recommended an innovative data-driven algorithm surrogate based artifact removal (SuBAR) to efficiently eradicate, to categorize and filter automatically ocular artifacts and muscular artifacts from single-channel electroencephalography. The results of relative study with the use of artificially EEG signals with artifact shows that in context of noise elimination and signal distortion the efficiency of this process was much better than any other traditional single-channel EEG denoising methods. This method is also efficient in the existence of slight and severe artifacts. The analysis shows that SuBAR is an auspicious
technique for portable environments, where insufficient EEG channels are available. The efficiency of the process was compared with the use of artificial EEG artifacts to wavelet thresholding and the Canonical correlation analysis joint with empirical mode decomposition. When this technique is applied to artifact-free EEG sections it provides minimum distortion of the signals. The obtained result recommends that this single channel method is a decent filter for artifact elimination in off-line situations with fewer sensors.

5) The limitations in their study are:

a) As spectrum of impure EEG is same as of a stationary process, this method could not detect the long and tenacious muscular artifacts.

b) In the area of wavelet, decomposition of impure signals could not be distinguished from EEG surrogates with large ocular artifacts.

Chi Zhang et al., 2015, proposed an instinctive online artifact elimination technique grounded on a priori information of artifact. The blending of independent component analysis (ICA), discrete wavelet transform and wavelet-ICA, was used to detached components of artifact. The key idea of this technique was to obtain the online a priori information of artifact and situate them in Wavelet independent component analysis (WICA) with the data which includes artifact. The components of artifact were acknowledged and detached by sorting the association of the noticeable a priori information of artifact and WICs. Here, eye rolling, eye blinking and teeth gritting was used to produce a priori electrooculography and electromyography artifact information. The results exhibited that by the use of this technique classification accuracies improved in both experiments: emotion recognition and motor imagery. Comparison of WICA with other ICA technique shows WICA enhances the performance of ICA, as WICA moves data into some new space where there is more redundancy and the artifacts features are fully used.

The limitations in their study are:

c) As there is limited number of WICs, too many components of artifact removal lead to the extra removal of artifact.

d) Only works on WICA, so it cannot be determined that whether other methods of ICA works in different situations or not.

e) Focused was only on automatic online removal methods of artifact so less has been achieved in classification and feature extraction techniques, which can disturb the classification accuracies.

Table 1: Literature survey on various techniques of EEG artifact elimination

<table>
<thead>
<tr>
<th>Title of Paper/Year</th>
<th>Author</th>
<th>Technique</th>
<th>Application</th>
<th>Useful Features of Technologies</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic EEG Artifact Removal Techniques by Detecting Influential Independent Components (2017)</td>
<td>Sim Kuan Goh, Hussein A. Abbass, Kay Chen Tan, Abdullah Al-Mamun, Chuanchu Wang and Cuntai Guan</td>
<td>An operative artifact removal technique (ART) which eliminates or reduce the influence of the artifacts. A variety of eight dissimilar and distinctive artifacts which occur practically is examined using this technique. The spatiotemporal-frequency characterizes effects artifacts and offers two solutions. The offered solution</td>
<td>Two offered ARTs attained a better signal-to-noise ratio in synthesized data and superior clutter-to-signal ratio score for acquired EEG. The result also shows improved artifact processing in time and frequency exploration and idea for other 8 categories of artifacts. This study eases consistent experimental EEG investigation and robust Brain Computer</td>
<td>The spatiotemporal-frequency effect of EEG artifacts which are collected from 8 designed experimental setups are described. Current automated artifact elimination methods in the setup of multiple artifacts by both acquired and synthesized EEG are assessed. Proposed new artifact elimination techniques, for numerous types of artifacts in the multiple artifacts scenarios, which have less restrictive previous supposition on artifact features.</td>
<td>Effect of the artifact elimination techniques which combine Blind Source Separation and wavelet/empirical mode decomposition, are not reported.</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Method</td>
<td>Consequences</td>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A Hybrid Approach for Artifacts Removal from EEG Recordings(2017)</td>
<td>Alaa Eldeen M. Helal, Ahmed Farag Seddik, Ayat Allah F. Hussein</td>
<td>Widespread method grounded on Template Matching approach with multiple signal-processing tools. The technique was assessed and authenticated on real EEG records and results show this technique has improved competences in routine EEG studies and analysis. The temporal, spectral and frequency characteristics of the extracted segments were analyzed to get precise, discrete artifact samples for each type.</td>
<td>Cosine Similarity, Wavelet Transform (sym 8) and Independent Component Analysis (FASTICA) are amalgamated to identify dissimilar 15 types of artifact. A latest application of Cosine Similarity in the arena of EEG processing was used to detect any same type of samples to templates of artifact.</td>
<td>The performance of algorithm was assessed on inadequate data sets. The parameters were evolved as per visual analysis by EEG specialists, using the True Scan EEG system in which human inaccuracy for the period of this manual examination cannot be overlooked.</td>
<td></td>
</tr>
<tr>
<td>Surrogate-based artifact removal from single-channel EEG(2017)</td>
<td>M. Chavez, F. Grosselin, A. Bussalb, F. De Vico Fallani, X. Navarro-Sune</td>
<td>An innovative method surrogate based artifact removal (SuBAR) for automatic elimination of proposed technique is useful for portable environments, like sleep stage scoring. In the occurrence of mild and severe artifacts also, this artifact elimination method gives a relative error nearly 4-5 times less than any other traditional methods.</td>
<td>As spectrum of impure EEG is same as of a stationary process, this method could not detect the long and tenacious muscular artifacts.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
artifact in single-channel EEG was offered. This technique was compared with wavelet thresholding and the canonical correlation analysis combined with an advanced version of the empirical mode decomposition.

<table>
<thead>
<tr>
<th>EEG artifact elimination by extraction of ICA-component features using image processing algorithms(2015)</th>
<th>T. Radüntz, J. Scouten, O. Hochmuth, B. Meffert</th>
<th>To detached data in linearly independent components (IC), independent component analysis was used and automated artifact elimination using linear discriminant analysis (LDA) was done for classification of feature vectors extracted from ICA components by image processing algorithms.</th>
<th>Proposed EEG artifact removal method is universal as it does not depend on quantity of EEG channels used and it achieves for any positions of EEG channel. The method decreases the time required for manual selection of ICs for artifact removal. More precise classification results were succeeded if, for successful system training, an average rating of more than two experts would be considered. With the same classification rate, the computational exertion can be decreased by down sampling. By merging the image features with frequency information and by applying non-linear classifiers like support vector machine, the results can be improved.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Removal Of Ocular Artifacts From EEG Data Using Adaptive Filtering And Independent Component Analysis(2009)</td>
<td>Carlos Guerrero-Mosquera, Angel Navia Vazquez</td>
<td>An adaptive filtering is applied to EEG data components which are obtained by ICA for eradicating EOG contamination. Scalp topographic</td>
<td>Adaptive filtering grounded on ICA is helpful in long recordings and on-line examination and to the eradication of EOG signals. Proposed technique is easy to implement, stable with a low computational cost. This method uses ICA components as reference inputs instead of noise which we need to eliminate. More analysis is required to analyze distortion or association among corrected EEG and original EEG. Extension of the technique is required to pure on-line scenarios.</td>
</tr>
<tr>
<td>Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information (2015)</td>
<td>Chi Zhang, Li Tong, Ying Zeng, Jingfang Jiang, Haibing Bu, Bin Yan, and Jianxin Li</td>
<td>The online artifact elimination technique grounded on a priori information of artifact was proposed. The blending of independent component analysis (ICA), discrete wavelet transform and wavelet-ICA, was used to detached components of artifact</td>
<td>Situations where a priori information of artifact is acquired grounded on the quantity of channels, the impact of the artifact in the experimentation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Robust removal of ocular artifacts by combining Independent Component Analysis and system identification (2014)</td>
<td>ZhenYu Wang, Peng Xu, TieJun Liu, Yin Tian, Xu Lei, DeZhong Yao</td>
<td>They proposed a new method of merging ICA and Auto-Regressive eXogenous (ICA-ARX) to eliminate ocular artifact.</td>
<td>ICA persuades a negative effect which is decreased by the use of ARX. ARX construct the multi-models grounded on the corrected signals of ICA and the selected reference EEG before polluted time for every channel, after that the ideal model would be carefully chosen for additional artifact elimination</td>
</tr>
</tbody>
</table>

III. CONCLUSIONS
In this paper broad literature has been reviewed to sightsee various methods of EEG artifact removal. Artifact removal is a stimulating field in real world environment. Various methods are independent component analysis (ICA), average artifact...
subtraction (AAS), real time independent component analysis (ICA), Recursive Least Squares (RLS) adaptive filter, Spatially Constrained Independent Component Analysis (SCICA) and Wavelet Denoising, Blind Source Separation. Limitations of already existing work in this field has been tinted which shall act as a ground for further research. The existing algorithms can be efficiently executed for several applications that involve a real-time EEG signal with artifacts suppressed.

REFERENCES

Artifacts removal in EEG signal using a new neural network.

From (2010), "Movement from EEG data using higher order statistics: Improved performance by wavelet analysis."

