

5 X October 2017

http://doi.org/10.22214/ijraset.2017.10195

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1339 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Comparative Performance Analysis of Binary
Search in Sequential and Parallel Processing

Shubham Dubey1, Dr. Kirti Mathur2

1International Institute of Professional Studies, Devi Ahilya University, Indore India
2International Institute of Professional Studies, Devi Ahilya University, Indore India

Abstract: In order to deal with huge data set alternative design with proper function is desirable. These functions may
perform operations sorting, searching, updating DBMS frequently. Apart from time and space metrics, energy, pattern and
size of input, exact match or approximations are also key issues to be considered. So there is versatile need to seek
improvement for performance. Among state of art approaches binary search relies on divide and conquer approach explore
key item at mid element of array after each iteration and accordingly moves interval to new sub range. In this paper an
analysis of state of art bisection algorithm has been presented with certain parameters as effectively with some dynamic
alteration in input. Further, analysis has been done with parallel processing.
Keywords: Searching, Parallel Processing, Time Taken for Searching, Comparison, Order

I. INTRODUCTION
Binary search is a searching algorithm that gives result with order of complexity O(log n) in an average case and in worst case
too [1][2].The best case complexity order is equivalent to O(1) . It follows Divide and Conquer approach. The necessary and
sufficient condition for this searching technique it the working array must be sorted [3]. The concept is to divide the array into
two sub arrays. Initially do it with the help of the highest value (last element if ascending sorted order has been followed) and
with least value i.e. first value of the array as per discussed sorting mechanism [3] Under binary search the target element is
searched with comparing the middle element of the sorted array[4]. If it matches with the element which we are searching for,
the index value of that matched element will be given out else it is noticed that whether this middle element is larger than the
element which we are searching or smaller. If the middle element is larger than our value then the searching will be performed
again in the left sub array of the main array, else we approach towards right sub array. These iterations will be continued until
we get the key or either we met with the last or first element of the array [5]. This concludes that if we are searching any key
element in a given array so the number of comparison will be either less than or equal to the half of the number of elements in
array. Thus the comparisons taken will be less with respect to the linear search [6][7]. The thing which cumulatively affects the
time taken to the complete execution is the processing speed and number of processing elements executing simultaneously [7].
The invention of single instructions multiple data approach beats vector and array processors on certain features specially
dealing capacity of multiple instructions at a time. The need of time reduction is truly mandatory in contrast to modern data and
performance scenario. Since the need of storage capacity is growing exponentially thus there is always a demand of
performance improvement in time, space, order, iterations and recursion etc. In sequential processing the number of elements
those can work together will be fixed and only one while it may be two or more than two are available for parallel processing.
Parallel execution of any program can be achieved by assigning the work to more than one processor and/or by multithread
based execution of program. Here in binary search there is a necessary condition it tells all the elements must be in a sorted
array so the number of comparison will be equals to the number of elements available in the array at worst case. Here in this
paper we are comparing the performance of binary search for threads one, four and eight threads based iterative and recursive
version of searching. Remaining sections of papers are as follows, Section II discusses the related work done towards binary
search and parallel processing. Section III contains the hypothesis were taken in part for implementation and results
verifications. Section IV tells about the flow of execution and methodology followed, here in this section hybridization of
binary searching and parallel threads processing can be seen. Section V contains results and discussion. Where various tables
and charts according to the implementation were attached those help to derive conclusion. Sections VI concludes the study and
analysis done in earlier sections and gives a direction of future work associated with this study.

II. RELATED WORK
 Chanchal P. et.al has emphasized in research titled as “Binary Search Algorithm” mentioned that when and how binary search
works for best output i.e. searching. In the paper author claimed that binary search is best suitable when we deal with tight
memory space and searching key element in a sorted array (data set) [1]. Authors Concluded in binary search can be used for
searching a key element in sorted array of integers having size 400 bytes. But if B-tree or RB- tree have been followed, then
dependency on memory increases rapidly. Tell S.V.Sridhar in [8] has done job in comparing linear and binary search.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1340 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Researchers had concluded that the order of binary search is logarithmic which need less computation and fewer complexes
with respect linear which has order of complexity as O(n). Authors discussed the range searching problem by referencing to
Knuth “No really nice data structures seem to exist” for searching in range. Research titled as Odd Even based Binary Search,
mentions that Karthick S. et.al has tried to improve the performance of the searching technique [9]. When searching a key
element. Binary search basically uses whole set of data for searching but here according to authors no need to do compare with
all data values. Just filter them by even and odd parameter. Scenario emphasizes, if there are m total elements on which m are
odd in array then for searching any even value by binary search the complexity will be log(n) while in proposed algorithm it’ll
reduced by O(log m) . So the complexity will be O(log(n – m)) [9]. In this algorithm worst case performance of this algorithm
will be close to average case or best case as of binary search. Thus it reduces the number of comparisons, resources needed and
complexities as well. Zingtao Duon has co-related the parallel processing with the image intelligent systems in. Image
processing was always a very interesting domain. Image processing includes pattern recognition, matching, generation, plotting
etc [10].

III. METHODOLOGY
 A. Traditional Method of Binary Search
Universal iterative procedure for the binary search is as following –
Let in target of n elements array S with records/elements S0 ... Sn−1, sorted in such a way so that S0 ≤ ... ≤ Sn−1, and Key value K,
the following routine uses binary search to find the index of K in S. If tn is the number of threads allotted to accomplish the task.
According to traditional approach -
1) Give sorted array S.
2) Fix Left to 0 and Right to n − 1.
3) If Left > Right, the search finishes as unsuccessful.
4) Set m (the position of the middle element) to the floor (the largest previous integer) of (L + R) / 2.
5) If Sm < K, set Left to m + 1 and go to step 2.
6) If Sm > K, set Right to m – 1 and go to step 2.
7) Now Sm = K, the search is done; return m.
These iterations keep track of the search boundaries via two variables. Some implementations may place the comparison for
equality at the end of the algorithm, resulting in a faster comparison loop but costing one more iteration on average.

B. Proposed method for Parallel Binary Search

1) Give sorted array S.
2) Allocate the threads Let tn is the number of threads.
3) Fix Left to 0 and Right to n − 1.
4) If Left > Right, the search finishes as unsuccessful.
5) Set m (the position of the middle element) to the floor (the largest previous integer) of (L + R) / 2.
6) If Sm < K, set Left to m + 1 and go to step 2.
7) If Sm > K, set Right to m – 1 and go to step 2.
8) Now Sm = K, the search is done; return m.
The flow chart for sequential binary and Parallel search is discussed here in Figure 1and 2.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1341 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Figure 1 Flow of binary search in Sequential processing

Figure 2 Flow of binary search in parallel processing

IV. RESULT AND DISCUSSION
Here in this section we have discussed about the results and tables achieved after the implementation of traditional/sequential
processing based approach and by parallel processing also.

A) Sequential Processing Based Results and Performance Evaluation
1) Sequential Processor based binary searching recursive version number of elements and time taken for search is

discussed here in Table1.

Table-1: Time taken by Sequential search in recursive version

Array size (Number of elements)
Time taken for searching elements in ms

First
Element Mid Element Last Element

100 1.35 0.604 1.106

500 1.28 0.604 1.327

1000 2.06 0.604 1.332

1500 2.342 1.617 1.384

2000 2.347 1.69 2.29

2500 2.549 2 2.789

Average Time 1.988 1.1865 1.704667
Here in Figure -3 the data from Table -2 has been plotted which tells about the comparative time taken by sequential processing
of recursive binary search for First, Middle and Last element searching.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1342 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Figure 1. Time taken Vs No of elements Sequential recursive version plot

2) Sequential Processor based binary searching recursive version number of elements and time taken for search in (ms)
discussed here in table 2.

Table 2 represents the time taken in recursive code of searching. Few values are atomic and have very less difference with
iterative versions but some are really countable.

Table-2: Time taken by Sequential processors for searching in recursive version

Size of Array

Time taken for searching elements in ms (mili
second)

First Element Mid
Element

Last
Element

100 1.5 0.612 1.37

500 1.527 1.38 1.327

1000 1.527 1.381 1.332

1500 1.529 1.407 1.384

2000 1.619 1.379 2.29

2500 1.632 1.415 1.49

Average Time 1.555667 1.262333 1.532167

Here in Figure 4 the data from Table.1 has been plotted which tells about the comparative time taken by sequential processing
of iterative binary search for First, Middle and Last element searching.

Figure 2. Time taken Vs No of elements Sequential iterative version plot

B) Parallel Four Threads Based Searching Results and Performance Evaluation
1) Thread-four based binary searching iterative version number of elements and time taken for search in (ms) has been

discussed here in table-3 As a tendency and desire is to be concerned there is always a prediction that performance will
improve with respect to sequential processing of binary search since number of threads are working here are greater than

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1343 ©IJRASET (UGC Approved Journal): All Rights are Reserved

sequential. After the table Figure-5 plots the data from Table-3, which tells about the comparative time taken by thread four
based iterative binary search for First, Middle and Last element searching.

Table-3: Time taken in Iterative version of Thread-4 based binary search

Size of Array
Time taken for searching elements in ms

First Element Mid Element
Last
Element

100 1.11 1.1 1

500 1.15 1.2 1.27

1000 1.13 1.24 1.285

1500 1.34 0.6 1.3

2000 1.47 2 2.1

2500 1.56 1.3 2.22

Average Time 1.293333 1.24 1.529167

Figure 3. Thread 4 iterative version plot time taken Vs no of elements

2) Thread-four based binary searching recursive version number of elements and time taken for search in (ms) is discussed in
Table -4

Table-4: Time taken in Recursive version of Thread-4 based binary search

Size of
Array

Time taken for searching elements in ms

First
Element

Mid
Element

Last
Element

100 0.9 0.58 0.85

500 1.13 0.6 2.3

1000 1.88 0.61 1.27

1500 1.357 0.63 1.69

2000 1.25 6.4 1.38

2500 1.32 6.5 1.66

Average
Time

1.306167 2.553333 1.525

Here in Figure-6 the data from Table-4 has been plotted which tells about the comparative time taken by thread four based
recursive binary search for First, Middle and Last element searching.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1344 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Figure 4. Thread 4 recursive version plot time taken Vs no of elements

3) Parallel Eight Threads Based Results and Performance Evaluation
4) Table-5 tells about Thread-8 based binary searching iterative version number of elements and time taken for search in (ms)

Thread eight means, all the threads are executing simultaneously for finding the solution. Numbers of thread are expected to
improved performance.

Table-5: Time taken in eight threads based iterative version of binary search

Size of Array

Time taken for searching elements in ms

First Element Mid Element Last
Element

100 0.7 2.61 1.25

500 1.2 1.24 1.23

1000 1.32 1.14 1.26

1500 1.333 1.39 1.35

2000 1.34 1.26 1.25

2500 1.35 1.27 1.3

Average
Time 1.207167 1.485 1.273333

Here in Figure-7 the data from Table-5 has been plotted which tells about the comparative time taken by thread eight based
iterative binary search for First, Middle and Last element searching. Here

Figure 5. Thread 8 based recursive version plot time taken Vs Number of elements

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1345 ©IJRASET (UGC Approved Journal): All Rights are Reserved

5) Table for Thread-8 based binary searching recursive version number of elements and time taken for search in (ms) is
attached below .Description of plotting the data of table 6 is given in figure 8.

Table-6 : Time taken in eight threads based recursive version of binary search

Size of Array

Time taken for searching elements in
ms

First
Element

Mid
Element

Last
Element

100 0.9 0.56 1.4

500 1.1 0.59 1.29

1000 1.2 0.59 1.27

1500 1.4 0.6 1.35

2000 1.2 6.1 1.43

2500 1.3 0.65 1.93

Average Time 1.18334 1.485 1.445

Figure 6. Thread 8 iterative version plot time taken Vs number of elements

Here in Figure-8 the data from Table-6 has been plotted which tells about the comparative time taken by thread eight based
iterative binary search for First, Middle and Last element searching. in graph an ambiguous behaviour of mid element searching
can be seen it’s due to employing some unnecessary threads. According to model eight threads have been allocated for doing the
task but element meet after first comparison thus thread allocation become overheads here.
6) Comparative analysis based results
7) Analysis of iterative binary searching for all (one, four, eight threads based) conditions
 Comparative time taken(in ms) on an average for searching first, last and mid element, for each 1-4-8 threads based binary
searching Iterative Version has been discussed here in Table-7

Table-7 : one, four and eight thread based iterative version Comparative performance of binary search.

Number of Threads
Time taken for searching elements in ms

First
Element Mid Element Last Element

Thread=1 1.555667 1.262333 1.532167

Thread=4 1.293333 1.24 1.529167

Thread=8 1.202072 1.485 1.273333

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1346 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Here in Figure-9 the data from Table-7 has been plotted which tells about the comparative time taken by thread one, four and
eight based iterative binary search for First, Middle and Last element searching.

Figure 7. Thread1, 4 and 8 iterative version plot time taken Vs number of elements

8) Analysis of recursive binary searching for all (one, four, eight threads based) conditions
Comparative times taken (in ms) on an average for searching first, last and mid element for each One, four and eight thread
based binary searching recursive Version is discussed here in Table-8

Table-8: One, four and eight thread based recursive version Comparative performance of Binary Search.

Number of
Threads

Time taken for searching elements in ms

First Element Mid
Element

Last Element

Thread=1 1.988 1.1865 1.704667

Thread=4 1.30617 2.55333 1.525

Thread=8 1.18333 1.485 1.445

Here in Figure-10 the data from Table-8 has been plotted which tells about the comparative time taken by thread one, four and
eight based recursive binary search for First, Middle and Last element searching

Figure 8. Thread1, 4 and 8 Recursive version plot time taken Vs no of elements

V. CONCLUSION
Our objective was to discuss issues and performance analysis of binary search under sequential and parallel processing .It is
clear from the result section that for recursive code in long run, for large set of data, eight thread based searching takes,

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 1347 ©IJRASET (UGC Approved Journal): All Rights are Reserved

minimum time for first and/or last element searching. While For Iterative code in long run for large set of data, four thread
based and sequential searching both perform similarly, while eight threads based searching takes minimum time for first and/or
last element searching. If our value ranges at mid value searching in iterative version 8 threaded searching performs worst while
in recursive version 4 threaded searching gives poorest performance. So for large set of data the best suited algorithm for
searching either first or last element will be eight threads based searching. The premier issues towards binary search were
dependencies among instructions and thread communications those can be mentioned as
If there is variable number of elements in an array then we can’t judge how many cores of processors needed to employee to
gain optimize computation Vs communication ratios (in case of stream of data).
Although research enables us to direct or to make decision about, selection of thread and version of binary search for optimized
results; but still there is need to invent size of grain and grain packing.
Since performance improvement is all time favourable area of enhancement thus this study gives a direction for future research
in order to minimize the time taken for searching.

REFERENCES
[1] A.Oommen ,C. Pal, "Binary Search Algorithm", IJIRT 100392 Publisher,India, Volume 1,Issue 5 ,2014.
[2] V.P.Parmar,C.K.Kumbharana, "Comparing Linear Search and Binary Search Algorithms to Search an Element from a Linear List Implemented through

Static Array, Dynamic Array and Linked List" IJCA,USA, Volume 121, IssueNo.3, July 2015.
[3] B.Hon, Y.Lu, "Research on optimization and parallelization of Optimal Binary Search Tree using Dynamic Programming", International Conference on

Electronic & Mechanical Engineering and Information Technology ,China, EMEIT-2012

[4] K. Zamanifar, M. Koorangi, "Designing Optimal Binary Search Tree Using Parallel Genetic Algorithms”, Publisher (IJCSNS) International Journal of
Computer Science and Network Security, Korea, Vol.7 Issue 1, January ,pp.138, 2007

[5] P.Suri, V. Prasad,"Binary Search Tree Balancing Methods: A Critical Study",IJCSNS International Journal of Computer Science and Network Security,
Korea,Vol.7,Issue.8,pp. 237-244, 2007.

[6] A. R. Chadha, R. Misal,T. Mokashi, "Modified Binary Search Algorithm",International Journal of Applied Information Systems (IJAIS),Foundation of
Computer Science FCS, New York, USA,Vol.7, Issue. 2, pp. 37-41, 2014

[7] C.Marttnez, S. Roura, "Randomized Binary Search Trees", Journal of the ACM, Vol. 45, Issue. 2, pp. 288 –323,1998.
[8] S.V.Sridhar, P.R. Rao, E.PriyadarshinI, N.V.Krishna,"Comparison of Search Data Structures and Their Performance Evaluation with Detailed Analysis"

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, pp.1437-1446, 2013.

[9] S.Karthik, "Odd Even Based Binary Search", International Journal of Computer Engineering & Technology (IJCET),Volume 7, Issue 5, pp. 40–55,2016.
[10] Z. Duon,T.Lei, h. Fan "Parallel Computing system for image Intelligent Processing ", Asia Network of Scientific Information, Information Technology

Journal, China,2012.
[11] C.Kathuria,G. Datta,V.Kaul,"Context Indexing in search Engine Using Binary Search",International Journal on Computer Science and Engineering

(IJCSE),Vol. 5, Issue.6,pp. 514-521,2013.
[12] A.M.Berman,”Data Structure via C++”,Oxford University Press Publication, New York,USA, pp.108-113,1997.

