Square Sum Difference Product Prime Labeling of Some Path Related Graphs

Sunoj B S ${ }^{1}$, Mathew Varkey T K ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government Polytechnic College, Attingal
${ }^{2}$ Department of Mathematics, T K M College of Engineering, Kollam

Abstract

Square sum difference product prime labeling of a graph is the labeling of the vertices with $\{0,1,2-------, p-1\}$ and the edges with absolute difference of the sum of the squares of the labels of the incident vertices and product of the labels of the incident vertices. The greatest common incidence number of a vertex (gcin) of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the gcin of each vertex of degree greater than one is one, then the graph admits square sum difference product prime labeling. In this paper we investigate some path related graphs for square sum difference product prime labeling.

Keywords: Graph labeling, greatest common incidence number, square sum, prime labeling, paths.

I. INTRODUCTION

All graphs in this paper are simple, finite and undirected. The symbol $V(G)$ and $E(G)$ denotes the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)- graph.
A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [2],[3] and [4]. Some basic concepts are taken from [1[2]. In this paper we investigated square sum difference product prime labeling of some path related graphs.
A. Definition: 1.1

Let G be a graph with p vertices and q edges. The greatest common incidence number (gcin) of a vertex of degree greater than or equal to 2 , is the greatest common divisor (gcd) of the labels of the incident edges.

II. MAIN RESULTS

A. Definition 2.1

Let $G=(V(G), E(G))$ be a graph with p vertices and q edges. Define a bijection $f: V(G) \rightarrow\{0,1,2,3,-\cdots------p-1\}$ by $f\left(v_{i}\right)=i-1$, for every i from 1 to p and define a 1-1 mapping $f_{\text {sqsdppl }}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow$ set of natural numbers N by
$f_{\text {sqsdppl }}^{*}(u v)=\left|\{\mathrm{f}(\mathrm{u})\}^{2}+\{\mathrm{f}(\mathrm{v})\}^{2}-\mathrm{f}(\mathrm{u}) \mathrm{f}(\mathrm{v})\right|$.The induced function $f_{\text {sqsdppl }}^{*}$ is said to be square sum difference product prime labeling, if for each vertex of degree at least 2 , the greatest common incidence number is 1 .

B. Definition 2.2

A graph which admits square sum difference product prime labeling is called a square sum difference product prime graph.

1) Theorem 2.1 : Path P_{n} admits square sum difference product prime labeling.

Proof: Let $G=P_{n}$ and let $\mathrm{v}_{1}, \mathrm{v}_{2},-\cdots-----------\mathrm{v}_{\mathrm{n}}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}-1$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,-\cdots------------, \mathrm{n}-1\}$ by

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-1, \mathrm{i}=1,2, \cdots-\cdots, \mathrm{n}
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $f_{\text {sqsdppl }}^{*}$ is defined as follows
$f_{\text {sqsdppl }}^{*}\left(v_{i} v_{i+1}\right) \quad=\mathrm{i}^{2}-\mathrm{i}+1, \quad \mathrm{i}=1,2,-\cdots-\cdots-\cdots---\mathrm{n}-1$
Clearly $f_{s q s d p p l}^{*}$ is an injection. gcin of $\left(\mathrm{v}_{\mathrm{i}+1}\right)$

$$
\begin{aligned}
& =\operatorname{gcd} \text { of }\left\{\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right), \mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{i}+1} \mathrm{v}_{\mathrm{i}+2}\right)\right\} \\
& =\operatorname{gcd} \text { of }\left\{\mathrm{i}^{2}-\mathrm{i}+1, \mathrm{i}^{2}+\mathrm{i}+1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{gcd} \text { of }\left\{2 \mathrm{i}, \mathrm{i}^{2}-\mathrm{i}+1\right\} \\
& =\operatorname{gcd} \text { of }\left\{\mathrm{i}, \mathrm{i}^{2}-\mathrm{i}+1\right\}
\end{aligned}
$$

$$
=1, \quad i=1,2,-----------n-2
$$

So, gcin of each vertex of degree greater than one is 1 .
Hence P_{n}, admits square sum difference product prime labeling.
2) Theorem 2.2: Middle graph of Path P_{n} admits square sum difference product prime labeling.

Proof: Let $G=M\left(P_{n}\right)$ and let $\mathrm{v}_{1}, \mathrm{v}_{2},-\cdots-----------\mathrm{v}_{2 \mathrm{n}-1}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}-1$ and $|\mathrm{E}(\mathrm{G})|=3 \mathrm{n}-4$
Define a function $f: V \rightarrow\{0,1,2,3,-------------, 2 n-2\}$ by

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-1, \mathrm{i}=1,2,-\cdots--, 2 \mathrm{n}-1
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $\mathrm{f}_{\text {sqsdppl }}^{*}$ is defined as follows
$\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)$
$=\mathrm{i}^{2}-\mathrm{i}+1$,
$\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{2 \mathrm{i}-1} \mathrm{v}_{2 i+1}\right)=4 \mathrm{i}^{2}-4 \mathrm{i}+4$,
$i=1,2,----------, 2 n-3$
$\mathrm{f}_{\mathrm{sqsdppl}}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{2 \mathrm{n}-1}\right) \quad=(2 \mathrm{n}-2)^{2}$,
Clearly $\mathrm{f}_{\text {sqsdppl }}^{*}$ is an injection.
gcin of $\left(\mathrm{v}_{1}\right) \quad=\operatorname{gcd}$ of $\left\{\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right), \mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{3}\right)\right\}$
$=\operatorname{gcd}$ of $\{1,4\}=1$.
gcin of $\left(\mathrm{v}_{\mathrm{i}+1}\right) \quad=1$,
i = 1,2,------------,2n-4
So, gcin of each vertex of degree greater than one is 1 .
Hence $\mathrm{M}\left(\mathrm{P}_{\mathrm{n}}\right)$, admits square sum difference product prime labeling.

C. Theorem 2.3

Duplicate graph of path P_{n} admits square sum difference product prime labeling.
Proof: Let $G=D\left(P_{n}\right)$ and let $\mathrm{v}_{1}, \mathrm{v}_{2},-------------\mathrm{v}_{2 n}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}$ and $|\mathrm{E}(\mathrm{G})|=2 \mathrm{n}-2$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,-------------, 2 n-1\}$ by

$$
f\left(v_{i}\right)=i-1, i=1,2,-\cdots---2 n
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $\mathrm{f}_{\text {sqsdppl }}^{*}$ is defined as follows
$\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)$
$=\mathrm{i}^{2}-\mathrm{i}+1$,
i $=1,2,----------, n-1$
$\mathrm{f}_{\mathrm{sqsdppl}}^{*}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}} \mathrm{v}_{\mathrm{n}+\mathrm{i}+1}\right)$
$=(\mathrm{n}+\mathrm{i})^{2}-(\mathrm{n}+\mathrm{i})+1$,
i = 1,2,------------,n-1
Clearly $\mathrm{f}_{\text {sqsdppl }}^{*}$ is an injection.
$\begin{array}{ll}\text { gcin of }\left(v_{i+1}\right) & =1, \\ \text { gcin of }\left(v_{n+i+1}\right) & =1, \\ \text { St } & \end{array}$

So, $g \operatorname{cin}$ of each vertex of degree greater than one is 1 .
Hence $\mathrm{D}\left(\mathrm{P}_{\mathrm{n}}\right)$, admits square sum difference product prime labeling.
D. Theorem 2.4

Strong Duplicate graph of path P_{n} admits square sum difference product prime labeling., when $(\mathrm{n}+4) \not \equiv 0(\bmod 13)$
Proof: Let $\mathrm{G}=\mathrm{SD}\left(\mathrm{P}_{\mathrm{n}}\right)$ and let $\mathrm{v}_{1}, \mathrm{v}_{2},--------------\mathrm{v}_{2 \mathrm{n}}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}$ and $|\mathrm{E}(\mathrm{G})|=3 \mathrm{n}-2$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,--------------2 n-1\}$ by

$$
f\left(v_{i}\right)=i-1, i=1,2,-----, 2 n
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $f_{\text {sqsappl }}^{*}$ is defined as follows
$f_{s q \text { sdppl }}^{*}\left(v_{i} v_{i+1}\right) \quad=\mathrm{i}^{2}-\mathrm{i}+1, \quad \mathrm{i}=1,2,----------2 \mathrm{e}-1$
$f_{s q s d p p l}^{*}\left(v_{2 i-1} v_{2 i+2}\right) \quad=4 \mathrm{i}^{2}-2 \mathrm{i}+7, \quad \mathrm{i}=1,2,-\cdots--\cdots----, \mathrm{n}-1$
Clearly $f_{s s d p p l}^{*}$ is an injection.
$g \operatorname{cin}$ of $\left(\mathrm{v}_{1}\right) \quad=1$
$g \operatorname{cin}$ of $\left(\mathrm{v}_{\mathrm{i}+1}\right)=1$,
$1=1,2,-----------, 2 n-2$
$g \operatorname{cin}$ of $\left(\mathrm{v}_{2 \mathrm{n}}\right)$
$=\operatorname{gcd}$ of $\left\{f_{s s d p p l}^{*}\left(v_{2 n-1} v_{2 n}\right), f_{s s d p p l}^{*}\left(v_{2 n-3} v_{2 n}\right)\right\}$
$=\operatorname{gcd}$ of $\left\{4 n^{2}-6 n+3,4 n^{2}-10 n+13\right\}$
$=\operatorname{gcd}$ of $\left\{4 n-10,4 n^{2}-10 n+13\right\}$
$=\operatorname{gcd}$ of $\left\{2 n-5,4 n^{2}-10 n+13\right\}$
$=\operatorname{gcd}$ of $\{2 n-5,13\}$
$=1$

So, gcin of each vertex of degree greater than one is 1 .
Hence $\mathrm{SD}\left(\mathrm{P}_{\mathrm{n}}\right)$, admits square sum difference product prime labeling.

1) Definition $2.1:$ A tortoise graph $\operatorname{TOT}_{n}(n \geq 4)$ is obtained from a path $\mathrm{v}_{1}, \mathrm{v}_{2},-\cdots--------, \mathrm{v}_{\mathrm{n}}$ by attaching edge between v_{i} and $\mathrm{v}_{\mathrm{n}-\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq\left[\frac{n}{2}\right]$.

E. Theorem 2.5

Tortoise graph TOT $_{\mathrm{n}}$ admits square sum difference product prime labeling, when n is even and $(\mathrm{n}+8) \not \equiv 0(\bmod 26)$.
Proof: Let $\mathrm{G}=\mathrm{TOT}_{\mathrm{n}}$ and let $\mathrm{v}_{1}, \mathrm{v}_{2},-\cdots-----------, \mathrm{v}_{\mathrm{n}}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ and $|\mathrm{E}(\mathrm{G})|=\frac{3 n-4}{2}$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,---------------\mathrm{n}-1\}$ by

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-1, \mathrm{i}=1,2,-\cdots---\mathrm{n}
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $f_{s q s d p p l}^{*}$ is defined as follows

$f_{\text {sqsdppl }}^{*}\left(v_{i} v_{i+1}\right)$	$=\mathrm{i}^{2}-\mathrm{i}+1$,	$\mathrm{i}=1,2,-\cdots-\cdots-\cdots---, \mathrm{n}-1$
$f_{\text {sqsdppl }}^{*}\left(v_{2 i-1} v_{2 i+2}\right)$	$=4 \mathrm{i}^{2}-2 \mathrm{i}+7$,	$\mathrm{i}=1,2,-\cdots-\cdots-\cdots--\frac{n-2}{2}$

Clearly $f_{s q s d p p l}^{*}$ is an injection.

gcin of $\left(\mathrm{v}_{1}\right)$	$=\operatorname{gcd}$ of $\left\{f_{\text {sqsdppl }}^{*}\left(v_{1} v_{2}\right), f_{\text {sqsap }}^{*}\right.$
	$=\operatorname{gcd}$ of $\{1,9\}=1$.
gcin of $\left(\mathrm{v}_{\mathrm{i}+1}\right)$	$=1$,
gcin of $\left(\mathrm{v}_{\mathrm{n}}\right)$	$=\operatorname{gcd}$ of $\left\{f_{\text {sqsdppl }}^{*}\left(v_{n} v_{n-1}\right), f_{\text {sas }}^{*}\right.$
	$=\operatorname{gcd}$ of $\left\{\mathrm{n}^{2}-3 \mathrm{n}+3, \mathrm{n}^{2}-5 \mathrm{n}+13\right\}$
	$=\operatorname{gcd}$ of $\left\{2 \mathrm{n}-10, \mathrm{n}^{2}-5 \mathrm{n}+13\right\}$
	$=\operatorname{gcd}$ of $\left\{\mathrm{n}-5, \mathrm{n}^{2}-5 \mathrm{n}+13\right\}$
	$=\operatorname{gcd}$ of $\{\mathrm{n}-5,13\}$
	$=1$,

So, gcin of each vertex of degree greater than one is 1 .
Hence $\mathrm{TOT}_{\mathrm{n}}$, admits square sum difference product prime labeling.
F. Theorem 2.6

Tortoise graph TOT $_{\mathrm{n}}$ admits square sum difference product prime labeling,
when n is odd and $(n+3) \not \equiv 0(\bmod 14)$.
Proof: Let $\mathrm{G}=$ TOT $_{\mathrm{n}}$ and let $\mathrm{v}_{1}, \mathrm{v}_{2},-\cdots-\cdots-\cdots--\cdots---, \mathrm{v}_{\mathrm{n}}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$ and $|\mathrm{E}(\mathrm{G})|=\frac{3 n-3}{2}$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,---------------\mathrm{n}-1\}$ by

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-1, \mathrm{i}=1,2,-\cdots---, \mathrm{n}
$$

Clearly f is a bijection.
For the vertex labeling f, the induced edge labeling $f_{\text {sqsdppl }}^{*}$ is defined as follows

$\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)$	$=\mathrm{i}^{2}-\mathrm{i}+1$,	i = 1,2,-----------, n -1
$\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{2 \mathrm{i}-1} \mathrm{v}_{2 i+2}\right)$	$=4 \mathrm{i}^{2}-2 \mathrm{i}+7$,	$i=1,2,---\cdots-\cdots---\frac{n-3}{2}$
$\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{n}-2} \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}^{2}-4 \mathrm{n}+7$		
Clearly $\mathrm{f}_{\text {sqsdppl }}^{*}$ is an injection.		
gcin of (v_{1})	$=1$	
gcin of ($\mathrm{v}_{\mathrm{i}+1}$)	$=1$,	$\mathrm{i}=1,2,----------\mathrm{n}-2$
gcin of (v_{n})	$=\operatorname{gcd}$ of $\left\{\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}-1}\right), \mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}-2}\right)\right\}$	
	$=\operatorname{gcd}$ of $\left\{n^{2}-3 n+3, n^{2}-4 n+7\right\}$	
	$=\operatorname{gcd}$ of $\left\{\mathrm{n}-4, \mathrm{n}^{2}-4 \mathrm{n}+7\right\}$	
	$=\operatorname{gcd}$ of $\{\mathrm{n}-4,7\}$	
	$=1$,	

So, gcin of each vertex of degree greater than one is 1 .
Hence $\mathrm{TOT}_{\mathrm{n}}$, admits square sum difference product prime labeling.

G. Theorem 2.7

The join of Path P_{n} and K_{1} admits square sum difference product prime labeling.
Proof: Let $G=P_{n}+K_{1}$ and let $a, v_{1}, \mathrm{v}_{2}, \cdots-\cdots---------, \mathrm{v}_{\mathrm{n}}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+1$ and $|\mathrm{E}(\mathrm{G})|=2 \mathrm{n}-1$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,--------------, \mathrm{n}\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, \mathrm{i}=1,2,-\cdots--, \mathrm{n} \\
& \mathrm{f}(\mathrm{a})=0
\end{aligned}
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $f_{\text {sqsdppl }}^{*}$ is defined as follows
$f_{\text {sqsdppl }}^{*}\left(v_{i} v_{i+1}\right)$
i = 1,2,------------,n-1

$$
\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{av}_{\mathrm{i}}\right)
$$

$$
\begin{aligned}
& =\mathrm{i}^{2}+\mathrm{i}+1, \\
& =\mathrm{i}^{2},
\end{aligned}
$$

i = 1,2,------------,n
Clearly $f_{\text {sqsdppl }}^{*}$ is an injection.

gcin of (a)	$=1$.
gcin of $\left(v_{1}\right)$	$=1$.
gcin of $\left(v_{i+1}\right)$	$=1$,
gcin of $\left(v_{n}\right)$	$=\operatorname{gcd}$ of $\left\{f_{s q \operatorname{sdppl}}^{*}\left(a_{n}\right), f_{\text {sqsdppl }}^{*}\left(v_{n} v_{n-1}\right)\right\}$
	$=\operatorname{gcd}$ of $\left\{n^{2}, n^{2}-n+1\right\}$
	$=\operatorname{gcd}$ of $\left\{n, n^{2}-n+1\right\}$
	$=\operatorname{gcd}$ of $\{1, n\}$
	$=1$.

i = 1,2,------------,n-2

So, gcin of each vertex of degree greater than one is 1 .
Hence $P_{n}+K_{1}$, admits square sum difference product prime labeling.

H. Theorem 2.8

Total graph of Path P_{n} admits square sum difference product prime labeling, when $(n-3) \not \equiv 0(\bmod 7)$.
Proof: Let $G=T\left(P_{n}\right)$ and let $v_{1}, v_{2},-------------, v_{2 n-1}$ are the vertices of G
Here $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}-1$ and $|\mathrm{E}(\mathrm{G})|=4 \mathrm{n}-5$
Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2,3,--------------, 2 n-2\}$ by

$$
f\left(v_{i}\right)=i-1, i=1,2,-\cdots-\cdots, 2 n-1
$$

Clearly f is a bijection.
For the vertex labeling f , the induced edge labeling $f_{\text {sqsdppl }}^{*}$ is defined as follows
$f_{\text {sqsdppl }}^{*}\left(v_{i} v_{i+1}\right)$
$=\mathrm{i}^{2}-\mathrm{i}+1$,
i = 1,2,------------,2n-3

$$
\begin{aligned}
& f_{\text {sasdppl }}^{*}\left(v_{2 i+1} v_{2 i+3}\right) \quad=4 \mathrm{i}^{2}+4 \mathrm{i}+4 \text {, } \\
& f_{\text {sqsdppl }}^{*}\left(v_{2 i+2} v_{2 i+4}\right)=4 \mathrm{i}^{2}+8 \mathrm{i}+7 \text {, } \\
& f_{\text {sqsappl }}^{*}\left(v_{1} v_{2 n-1}\right)=(2 \mathrm{n}-2)^{2} \\
& f_{s q s d p p l}^{*}\left(v_{2} v_{2 n-1}\right) \quad=4 \mathrm{n}^{2}-10 \mathrm{n}+7 \text {. } \\
& f_{s q s d p p l}^{*}\left(v_{1} v_{3}\right)=4 \\
& f_{s q s d p p l}^{*}\left(v_{1} v_{4}\right)=9 \\
& \text { Clearly } f_{s q s d p p l}^{*} \text { is an injection. } \\
& g c i n \text { of }\left(v_{2 n-1}\right) \\
& =1 \text {. } \\
& =1, \quad i=1,2,----------, 2 n-4 \\
& =\operatorname{gcd} \text { of }\left\{\mathrm{f}_{\text {sqsdppl }}^{*}\left(\mathrm{v}_{2 \mathrm{n}-3} \mathrm{v}_{2 \mathrm{n}-2}\right), \mathrm{f}_{\mathrm{sqsdppl}}^{*}\left(\mathrm{v}_{2 \mathrm{n}-4} \mathrm{v}_{2 \mathrm{n}-2}\right)\right\} \\
& =\operatorname{gcd} \text { of }\left\{4 n^{2}-14 n+13,4 n^{2}-16 n+19\right\} \\
& =\operatorname{gcd} \text { of }\left\{2 n-6,4 n^{2}-16 n+19\right\} \\
& =\operatorname{gcd} \text { of }\{n-3,(n-3)(4 n-4)+7\} \\
& =\operatorname{gcd} \text { of }\{\mathrm{n}-3,7\} \\
& =1 \text {. } \\
& =\operatorname{gcd} \text { of }\left\{f_{\text {sqsdppl }}^{*}\left(v_{1} v_{2 n-1}\right), f_{\text {sqsappl }}^{*}\left(v_{2} v_{2 n-1}\right)\right\} \\
& =\operatorname{gcd} \text { of }\left\{(2 n-2)^{2}, 4 n^{2}-10 n+7\right\} \\
& =\operatorname{gcd} \text { of }\left\{2 n-2,4 n^{2}-10 n+7\right\} \\
& =\operatorname{gcd} \text { of }\{2 n-2,(2 n-2)(2 n-3)+1\} \\
& =1 \text {, }
\end{aligned}
$$

So, gcin of each vertex of degree greater than one is 1 .
Hence $T\left(P_{n}\right)$, admits square sum difference product prime labeling.

REFERENCES

[1].Apostol. Tom M, Introduction to Analytic Number Theory, Narosa, (1998).
[2].F Harary, Graph Theory, Addison-Wesley,Reading, Mass, (1972)
[3].Joseph A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics (2016), \#DS6, pp 1 - 408.
[4].T K Mathew Varkey, Some Graph Theoretic Generations Associated with Graph Labeling, PhD Thesis, University of Kerala 2000.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

