Nano flakes of NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$ as catalyst for simple and efficient green synthesis of Dihydropyridines

K. Koteswara Rao1, D. Tejeswara Rao2, B. Nagamani Naidu3

1,2,3Chemistry Division, Department of Basic Science & Humanities, GMR Institute of Technology, Rajam, Srikakulam (dist), Andhra Pradesh

Abstract: 1, 4-Dihydropyridine derivatives have been synthesized utilizing nano flakes of NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$ as photo-catalyst. The method adopted is more convenient and cost effective in the conversion of aldehydes with β-ketoester and ammonium acetate to give a range of Hantzsch pyridines in magnificent yields. This multicomponent reaction occurred easily in water reflux paving the way for an efficient green synthesis of new Dihydropyridines.

Keywords: 1,4-dihydropyridine, Hantzsch reaction, Aldehydes, Diketones, Ammonium acetate, Multi component reaction

I. INTRODUCTION

Synthesis of 1, 4 dihydro pyridines by the Hantzsch reaction [1] stands as one of the earliest examples of multi component reactions (MCRs) where all the starting materials are taken in just one-pot and reacted under set conditions. Production of a wide array of lead compounds in pharmaceutical industry relies largely on the specific synthetic strategies adopted for MCRs [2]. Multi component synthesis methods offer great advantages over routine direct synthetic protocols giving products with differing activities required for the discovery of new drugs leading to product development utilizing combinatorial science [3]-[4]. In 1882, Arthur Rudolf Hantzsch, a German scientist, announced a cyclo-condensation among ethyl acetoacetate, aldehydes and aqueous ammonium hydroxide to yield the valuable heterocyclic product of 1,4-dihydropyridine; from that point onwards, it was popularly called as Hantzsch reaction [5].

The di hydro pyridine derivatives display a vast scope of diverse applications [6]-[8], for example, anticonvulsant, antitumor, antianxiety, vasodilator, bronchodilator, energizer, pain relieving, sleep inducing, calming and neuro-protectants and in addition platelet anti-aggregatory specialists. Dihydro-pyridines are economically utilized as calcium channel blockers [8] for the treatment of cardiovascular infections (Figure 1). The colossal natural action of Hantzsch pyridines attracted numerous analysts and academicians. Subsequently, a few endeavours have been made to synthesize 1,4-dihydropyridine subsidiaries utilizing different catalysts and reaction conditions, for example, metal triflate [9], NaHSO$_4$-SiO$_2$ [10], molecular iodine [11], ionic liquid [12], Ni nanoparticles [13], Bi$_2$WO$_6$ [14], Magnetic Fe$_3$O$_4$ [15] have been used to synthesize 1,4-DHPs.

Fig. 1: Biologically active dihydropyridine derivatives
However, most of the synthetic strategies adopted are experiencing a few disadvantages, for example, long response time, low yields, dreary workup techniques and the utilization of costly catalysts. Therefore, the need for an effective synthetic method is still sought after. As part of our discovery program in growing new strategies, we report thus a straightforward and effective strategy for the synthesis of 1,4-dihydropyridine derivatives utilizing a rare earth doped double perovskite as a catalyst. The Bismuth containing double perovskite (NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$) is a non-hygroscopic yellowish white solid with nanoflake structure, is used for the green synthesis of new 1, 4 Dihydropyridines.

II. MATERIALS AND METHODS

Reagents and chemicals were acquired from chemical suppliers and utilized without further purification. IR spectra were recorded on a thermo Nicolet Nexus 670 FT-IR spectrophotometer. 1H and 13C NMR spectra were recorded on either a Bruker Avance 300 (Bruker, Germany; 300.132 MHz for 1H, 75.473 for 13C) or Varian FT-200 MHz (Gemini) spectrometer in CDCl$_3$. The chemicals shifts (δ) and coupling constants (J) cited in hertz are accounted for in parts per million in respect to tetra methyl silane (δ = 0.00 ppm) (for 1H) as an interior standard. The resonances of leftover proton and those of carbons in deuterated solvents CDCl$_3$, DMSO-d$_6$ (δH = 2.50 ppm, δC = 39.52 ppm) were utilized as inside models. Solvents for chromatography (n-hexane, acetonitrile, cyclohexane, and EtOAc) were refined preceding use. For thin-layer chromatography, Merck pre-covered silica gel 60 F-254 plates were utilized; the spots were identified utilizing UV light (254 nm) or iodine vapour.

A. General procedure

A mixture of benzaldehyde (1 mmol, 106 mg), ethyl acetoacetate (2 mmol, 260 mg), ammonia derivative (4 mmol, 308 mg), and the nano flake structured NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$ (200 mg) will be combined in a round flask in water (10 mL) at Room Temperature (RT) for 2h. The progress of the reaction will be checked by TLC. After completion of the reaction, the catalyst is isolated by utilizing a magnet and reused for further study. The reaction mixture will be diluted with EtOAc (10mL) and washed with brine water (2x10 mL), dried over anhydrous Na$_2$SO$_4$, and dissipated in vacuo, and the subsequent item will be subjected to column chromatography on silica gel with 5% EtOAc in hexane to isolate pure dihydropyridine.

B. Synthesis of nano NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$

NaMgBi$_{0.85}$Eu$_{0.12}$WO$_6$ nano catalyst was initially prepared by a sol–gel method. The particle size was contemplated by SEM and the distinguishing proof of NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$ morphology depended on the examination of SEM pictures. The SEM pictures of nano-particles plainly demonstrate that NaMgBi$_{0.85}$Eu$_{0.15}$WO$_6$ nano-particles have flake like structure.

C. Selected Spectroscopic Data

1) Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate: Yellow crystalline solid: mp 154-156 °C; 1H NMR (300 MHz, CDCl$_3$) δ (ppm) 7.27 (d, J = 7.5 Hz, 2 H), 7.19 (t, J = 7.3 Hz, 2H), 7.10 (t, J = 7.3 Hz, 1 H), 6.21 (br s, 1 H), 4.99 (s, 1 H), 4.08 (q, J = 7.2 Hz, 4 H), 2.28 (s, 6 H), 1.21 (t, J = 7.2 Hz, 4 H); 13C NMR (75 MHz, CDCl$_3$) δ (ppm) 167.8, 147.9, 144.3, 127.9, 127.8, 126.1, 125.0, 103.9, 59.7, 39.6, 19.3, 14.2; MS (ESI) m/z 382.1635; HRMS (ESI) Calcld for C$_{20}$H$_{22}$NO$_4$ (M+H)$^+$ 382.1630, found 382.1635.

2) Diethyl 4-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate : Yellow crystalline solid: mp 150-152 °C; 1H NMR (300 MHz, CDCl$_3$) δ (ppm) 1.20(t, 6H, J=7.18), 2.26(s, 6H), 3.71(s, 3H), 3.93-4.09(m, 4H), 4.78(s, 1H), 6.66(d, 2H, J=8.50), 7.07(d, 2H, J=8.50), 8.29(s, 1H); 13C NMR (75 MHz, d$_6$)-DMSO) δ (ppm) 14.10, 18.16, 37.94, 54.75, 58.89, 102.13, 113.09, 128.29, 140.52, 144.94, 157.41, 166.98; MS (ESI) m/z 382(M+Na)$^+$; HRMS (ESI) Calcld for C$_{20}$H$_{22}$NO$_4$Na (M+Na)$^+$ 382.1630, found 382.1635.

3) Diethyl 2,6-dimethyl-4-(naphthalen-2-yl)-1,4-dihydropyridine-3,5-dicarboxylate : Yellow crystalline solid: mp 137-139 °C; 1H NMR (300 MHz, CDCl$_3$) δ(ppm) 7.75 (dd, J = 7.3 and 4.6 Hz, 2 H), 7.69 (d, J = 8.5 Hz, 1 H), 7.67 (s, 1 H), 7.48 (dd, J = 8.5 and 1.5 Hz, 1 H), 7.39 (app qu, J = 8.8 Hz, 2 H), 5.64 (br s, 1 H), 5.17 (s, 1 H), 4.08 (m, 4 H), 2.36 (s, 6 H), 1.22 (t, J=7.1 Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ (ppm) 167.6, 145.2, 143.8, 133.3, 132.3, 127.8, 127.4, 127.4, 127.1, 126.3, 125.5, 125.0, 104.1, 59.7, 39.9, 19.6, 14.2; MS (ESI) m/z 402(M+Na)$^+$; HRMS (ESI) Calcld for C$_{23}$H$_{25}$NO$_4$Na(M+Na)$^+$ 402.1681, found 402.1682.

4) Diethyl 4-(2-fluorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate: Yellow crystalline solid: mp 148-152 °C; 1H NMR (300 MHz, CDCl$_3$) δ (ppm) 7.28 (t, J = 7.5 Hz, 1 H), 7.05 (d, J = 6.2 Hz, 1 H), 6.95 (t, J = 7.4 Hz, 1 H), 6.86 (t, J = 8.9 Hz, 1 H), 6.64 (s, 1 H), 5.24 (s, 1 H), 4.02 (q, J = 7.2 Hz, 4 H), 2.22 (s, 6 H), 1.16 (t, J = 7.3 Hz, 6 H); 13C NMR (75 MHz,
5) Diethyl 4-(furan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate: Orange crystalline solid: mp 153-155 °C; 1H NMR (300 MHz, CDC13) δ (ppm) 7.18 (s, 1 H), 6.18 (br s, 2 H), 5.91 (d, J = 4.8 Hz, 1 H), 5.18 (s, 1 H), 4.17 (q, J = 7.1 Hz, 2 H), 4.12 (q, J = 7.1 Hz, 2 H), 2.29 (s, 6 H), 1.24 (t, J = 7.1 Hz, 6 H); 13C NMR (75 MHz, CDC13) δ (ppm) 167.5, 158.7, 145.8, 110.0, 104.4, 100.5, 59.8, 33.4, 19.3, 14.3; MS (ESI) m/z 320(M+H)+; HRMS (ESI) Calcd for C17H20N20O8 (M+H)+ 320.1498, found 320.1493.

6) Diethyl 4-(3,4-dihydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate: 1H NMR(500 MHz, CDCl3) δ (ppm) 1.21(t, 6H, J=6.98), 2.24(s, 6H), 3.97-4.08(m, 4H), 4.71(s, 1H), 6.43-6.61(m, 3H), 8.22(s, 1H); 13C NMR(75 MHz, d6-DMSO) δ (ppm) 14.19, 18.20, 40.94, 55.76, 61.24, 102.13, 116.09, 117.29, 120.76, 128.29, 140.52, 144.94, 147.45, 157.41, 167.58;MS (ESI) m/z 362(M+H)+; HRMS (ESI) Calcd for C20H22N20O10(M+H)+ 362.1604, found 362.1600.

7) Diethyl 4-(3-hydroxy-4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate: 1H NMR(300 MHz, CDC13) δ (ppm) 1.23(t, 6H, J=7.18), 2.25(s, 6H), 3.77(s, 3H), 3.96-4.10(m, 4H), 4.75(s, 1H), 6.51-6.61(m, 2H), 6.71(s, 1H), 8.21-8.32 (bs, 1H); 13C NMR (75 MHz, CDC13) δ (ppm) 14.25, 19.35, 39.01, 55.65, 59.60, 103.97, 110.90, 113.85, 120.34, 140.09, 143.81, 145.77, 167.76; MS (ESI) m/z 376(M+H)+; HRMS (ESI) Calcd for C20H20N2O8(M+H)+ 376.1755., found 376.1760.

8) Diethyl 4-(4-(3-fluoro-4-nitrophenoxo)phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-di carboxylate: 1H NMR(300 MHz, CDCl3) δ (ppm) 1.23(t, 6H, J=6.80), 2.33(s, 6H), 4.00-4.21(m, 4H), 4.95(s, 1H), 6.60(dd, 1H, J1,1=2.27, J1,3=9.82), 6.75-6.83(m, 1H), 6.92(d, 2H, J=8.31), 7.24-7.34(m, 3H); 13C NMR (75 MHz, CDCl3) δ (ppm) 14.22, 19.3, 39.6, 59.7, 102.77, 106.92, 115.08, 117.45, 126.1, 127.9, 130.33, 135.67, 144.3, 147.92, 154.08, 155.65, 164.09, 167.8; MS (ESI) m/z 485(M+H)+;

9) Diethyl 2,6-bis[(2-(1,3-dioxoisooquinolin-2-yl)ethoxy)methyl]-4-(4-methoxyphenyl)-1,4-dihydropyridine-3,5-dicarboxylate: 1H NMR(500 MHz, d6-DMSO) δ (ppm) 1.14(t, 3H, J=6.64), 1.25(t, 3H, J=7.47), 2.55(s, 1H), 3.56-3.79(m, 7H), 3.86-4.05(m, 4H), 4.07-4.16(m, 1H), 4.28(d, 1H, J=16.60), 4.56-4.60(bs, 1H), 4.68(d, 1H, J=16.60), 5.88(s, 1H), 6.11(s, 1H), 6.74(d, 2H, J=8.30), 7.03(d, 2H, J=9.13), 7.68-7.88(m, 8H); 13C NMR(75 MHz, CDCl3) δ (ppm) 14.25, 39.22, 43.82, 55.22; 62.02, 68.09, 70.84, 99.92, 114.56, 127.82, 131.06, 132.87, 133.67, 145.36, 158.22, 166.92, 168.02; MS (ESI) m/z 738(M+H)+.

III. RESULTS AND DISCUSSION

The SEM image of NaMgBi0.85Eu0.15WO6 is shown in figure 2 which clearly indicates the nanoflake structure. To optimize the reaction conditions, we checked the four-part buildup response of benzaldehyde (1 mmol), ethyl acetoacetate (1 mmol), and ammonia (4 mmol) in the nearness of various reactant measures of nano NaMgBi0.85Eu0.15WO6 at room temperature in 5 mL of EtOH, as a model response. It was found that 0.03 g of catalyst was sufficient to catalyze the response to deliver exceptional returns of dihydropyridine subsidiaries. As appeared in Table 1 (Entries 1–4), utilizing 0.03 g of the catalyst was sufficient to advance the reaction, moreover, an increase in the amount of catalysts did not make significant improvement in the yields. In the second stage the impact of solvent was examined. As can be seen from Table 1 (Entries 5–9), it was found that EtOH is the best solvent for this response to create exceptional returns in short response time in examination with other polar, non-polar, protic and aprotic solvents. To concentrate the sweeping statement of this technique, diverse sorts of beginning material were responded in the union of 1,4-dihydropyridines. As represented in Table 1, aromatic aldehydes with both electron withdrawing groups and electron donating groups respond well to give the items in great to phenomenal yields. As it is anticipated, starting from aldehyde with electron withdrawing groups reduce the yields, the electron donating groups are giving good yields in short times (for example, alkoxy).

The nano flake structure and the inherent photocatalytic nature of NaMgBi0.85Eu0.15WO6 is perhaps helpful for better yields in the multicomponent reaction.
Table 1: Nano catalyzed synthesis of Dihydropyridines.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Aldehyde</th>
<th>Keto Ester</th>
<th>Product<sup>a</sup></th>
<th>Time(h)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1a)</td>
<td>(2a) OEt</td>
<td></td>
<td>2.0</td>
<td>95</td>
</tr>
<tr>
<td>(2)</td>
<td>(1b)</td>
<td>(2a) OEt</td>
<td></td>
<td>1.9</td>
<td>96</td>
</tr>
<tr>
<td>(3)</td>
<td>(1c)</td>
<td>(2a) OEt</td>
<td></td>
<td>2.1</td>
<td>90</td>
</tr>
<tr>
<td>(4)</td>
<td>(1d)</td>
<td>(2a) OEt</td>
<td></td>
<td>2.2</td>
<td>88</td>
</tr>
<tr>
<td>(5)</td>
<td>(1e)</td>
<td>(2a) OEt</td>
<td></td>
<td>2.3</td>
<td>89</td>
</tr>
<tr>
<td>(6)</td>
<td>(1f)</td>
<td>(2a) OEt</td>
<td></td>
<td>2.2</td>
<td>89</td>
</tr>
<tr>
<td>(7)</td>
<td>(1g)</td>
<td>(2a) OEt</td>
<td></td>
<td>2.2</td>
<td>90</td>
</tr>
</tbody>
</table>

Fig. 2: SEM image of catalyst NaMgBi_{0.85}Eu_{0.15}WO₆
In conclusion, a rare-earth doped double perovskite nano-materal was successfully used as catalyst in the synthesis of dihydropyridine derivatives. Different aromatic aldehydes, ethylaceto acetate and ammonia could be endured in this reaction to make it cost effective and result in great yields. Reaction time perceptibly diminished from days to hours in presence of this nano catalyst. Additionally studies to extend the substrate diversity and understand detailed reaction pathway are in progress in our lab.

V. ACKNOWLEDGEMENT

We are extremely thankful to GMR Institute of Technology, Rajam for supporting us in carrying out this work.

REFERENCES

