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Abstract:  This paper proposes A Shared Multiplier for Effectual Area of 1024 Point Fast Fourier Transform Processor. This 
processor utilizes 28% of complex multipliers with reduced area. These processors have flexibility of different Fast Fourier 
Transform sizes (2, 4,8,16,3,64,128,256 and 512) of length, So that the hardware complexity reduced. The proposed mixed radix 
butterfly units can be designed in MATLAB SIMULINK. This processors verified by XILINX HDL tool modified with 
VERILOG language and implemented in 45-nm CMOS technology. The synthesis results shows that area reduce by 19% and 
achieve a high throughput rate up to 27.5GS/s at 530 MHz In addition, the processor can support for any FFT sizes by addition 
of stages and works for inverse Fast Fourier Transform by simply taking conjugation of Fast Fourier Transform. 
Keywords: Fast Fourier Transform (FFT), Mixed Radix Multipath Delay Commutator (MRMDC), Butterfly Unit (BU). 

I.  INTRODUCTION 
 FFT is an important part in OFDM systems.OFDM has been used as a leading modulation technique for wireless and wire line 
communication standards, such as IEEE 802.11n/ac/ad [1], IEEE 802.15.3.C [2],DAB [3],ultrawide-bandUWB[4], and optical 
OFDM[5][6].High speed OFDM systems such as wireless personal area networks(WPANS  [2], UWB[4] and O-OFDM [5],[6] 
require high speed FFT computations to meet higher data rates. The FFT Computation of real input samples be in 1-4, gives the 
symmetry property  
of FFT to reduce the computational complexities in different area of applications like medical in electrocardiography [5]. 
The FFT processors proposed with real time processing requirements and less hardware complexity[9]-[11].To achieves less area, 
memory based architectures[11]-[14] like application-specific instruction set processors meet the computation of FFT but they 
cannot reach high-speed requirements. For high throughput rate, There are many pipelined architectures proposed [14]-
[16].pipelined architectures are divided into single path delay commutator [14], single path feedback [15],[16],multipath delay 
feedback or commutator [12]-[14]. 
The MDC architectures [13]-[15] are a high throughput and used multiple data paths to maintain easy synchronization control. The 
radix -4 MDC architectures improve the area by reducing of complex multipliers from three to one in each stage. To perform 
twiddle factor multiplications in one stage leads one clock cycle, another multiplication needs one more clock cycle faster than the 
system [13]. Therefore, the architecture in [13] may not use as high speed applications. To get high throughput rate, FFT 
architectures using folding transformations [14], [15] have proposed. 
For high speed applications, processors requires a through put rate of over 2 GS/s,radix-8or radix-16 algorithms are 
used[18].Normally, the FFT size is a power of two, for typical like 128 ,256 ,512 and 1024 FFT sizes are not powers of eight. That 
is radx-8 algorithms cannot handle these FFT sizes. To provide these requirements, the proposed 1024 FFT processor meets the 
OFDM requirements by using mixed  
Radix algorithm. Therefore the proposed processors can perform FFT computations for sizes of not powers of eight. 
A brief interpretation on the128/256,256/512–point MRMDC pipelined FFT processors [17], [18] with eight parallel data paths can 
operate on high clock frequency. To maintain the demands of OFDM systems, three types MRMDC architectures are proposed [17]. 
shared multiplier of 1024 -point eight parallel MRMDC FFT processor have Type 1 reduces the number of butterflying units(BU’s 
in the first stage. Type 2 proposes the shared multiplier of 1024 processor can reduce the complex multipliers for radix-8 BU’s in 
the second stage. Type 3 combines both the Type 1 and Type 2 can reduce the number of BU’s and complex multipliers. 
Document and are identified in italic type, within parentheses, following the example. Some components, such as multi-leveled 
equations, graphics, and tables are not prescribed, although the various table text styles are provided. The formatter will need to 
create these components, incorporating the applicable criteria that follow. 
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II. MIXED - RADIX FFT ALGORITHM 
The  N-point discrete fourier transform (DFT  is defined as X(k)  =∑ x(n ) W N 

nk  ,k=0,102,N-1;n=0,1,2,N-1;        (1) 
Where x(n ) is the input sequence X(k)  is the output sequence, and Nis the transform length.WN

nk denotes the Nth primitive root of 
unity, with its exponent evaluated modulo N and is expressed as  
 WN

nk = e-j (2Π nk/N) = cos (2Πnk/N) – sin (2Πnk/N ).       (2) 
When the FFT size is not a power of radix r, then mixed radix algorithm should be used. 
For example if   
N=256     
 n = 64n1+n2,     0≤n1≤4,0≤n2≤64     
k = k1+4k2,       0≤k1≤4, 0≤k2≤64                 (3)  
Substituting (3) in (1)   
X (k) = X (k1+4k2)                                                  (4) 
=∑ x (64n1+n2) W256

(64n1+n2) (k1+4k2); 0<n1<4;0<n2<64 
=∑ {BF4 (n2, k1)}W64

n2k2  ;   n2=0,1, . . . . , 63.        (5) 
The 256 point mixed radix FFT algorithm can be derived from (4) by decomposing the remaining 64-point DFT into 8-point DFT 
twice. 
The MRMDC architecture is explained using 128/256-point MRMDC FFT/IFFT processor [19] .The architecture consists of BU’s, 
delay commutators, and twiddle factor multipliers. In the first stage, the radix-2/4 BU can perform one radix-4 or two radix-2 
operations to compute the 128 and 256-point FFTs. There are three stages based on radix-2, radix-4, and radix-8 algorithms. The 
input sequence of single path is divided into eight data paths. 

III. EXISTING 128-POINT MRMDC FFT/IFFT PROCESSOR 
The proposed FFT processor can support the 128-point FFT/IFFT in a similar manner to compute the 256-point FFT described in 
Section. As shown in Fig. 1, the proposed structure reduces the number of BUs from two to one in the first stage compared with the 
existing structure in Fig. 2. In Fig. 2, the input sequence of each data path is split into four data streams, and it takes 12 cycles using 
D4, D8, and D12 to start the first butterfly computation and four cycles to perform the radix-2/4 operations. To finish the radix-2 
computation using one radix-2/4 BU, the proposed structure requires four cycles. Therefore, the first stage of the proposed processor 
also requires 16 cycles, even with one radix-2/4 BU. Thus, the structure consisting of one radix-2/4 BU in the first stage can reduce 
the hardware complexity without increasing the number of clock cycles compared with the existing architecture. 

 
Fig 1:  SMSS based 128/256 point FFT Processor 

In the first stage in Fig. 2(a), the radix-2/4 BU can perform two radix-2 butterfly computations. The proposed structure  performs 
complex multiplications for the second stage before the delay commutator using the shared multipliers. The Commutator is 
configured by the operation mode. In the 128-point FFT, the operation mode number is calculated by t modulo four. The 
commutator operates in four different operation modes for performing the 128-point FFT. 
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 (a) 

 
(b) 

Fig. 3 shows the proposed first stage in the dotted box shown in Fig. 1, which consists of the input buffer, butterfly Processing 
element, and commutator. In the first stage, the input sequence of each data path is divided into four data streams (A, B, C, and D), 
which are delayed by the delay elements to synchronize proper cycles. The butterfly opera- tions in the first stage are performed by 
four data streams. The output data of the first stage are delivered to the second stage through the delay elements and the delay 
commutator by the operation modes. 

 
(c) 

Fig 2: Existing first stage of the zeroth data-path for the  256-point FFT 
 

A. Reducing the number of butterflies (Type I) 
B. Reducing the number of complex multipliers (Type II)   
C. Architecture employing the scheduling scheme (Type III) 
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The FFT size determines the delay cycle of each delay element and the butterfly operation of the first stage. Moreover, the switching 
of the multiplexers, MUX1, MUX2, and MUX3, depends on the FFT size regardless of whether the data on the same path are to be 
delayed or not. The control signals of the delay elements vary with the FFT size, and each delay element has different operation 
modes depending on the FFT size. 

D.  Second and Third Stage Structure 
The input data multiplied by the appropriate twiddle factors are fed into the second stage for the radix-8 butterfly operation through 
the delay commutator, as shown in Fig. 2. In the second stage, the remaining radix-8 calculation without multiplications is 
performed because all the multipliers of the second stage in the existing one are moved to the shared multipliers in the proposed first 
stage. A suitable structure is required to ensure the correction of the FFT output data because the third stage in Fig. 1 is different 
from the second stage. All the output data generated by the radix-8 butterfly in the second stage are fed to the third stage by a 
specific order   
   in3 (p,l) =out2(l, p)                           (6) 
Where in3 and out2 represent the input data of the third stage and the output data of the second stage, respectively. 
In (13), p and l represent p =0, 1... P−1 and l = 0, 1... L−1, respectively.   
P is the number of parallel data paths and L is the number of outputs from a parallel data path. 
 The proposed processor has the eight-parallel paths, and each path has eight- parallel data streams (A,...,H). The radix-8 BU 
operates in the third stage using the input sequence from the second stage based on (4). In the existing architecture, the second stage 
consists of the radix-8 BU in [16] that requires 11 complex multipliers. The third stage using the radix-8 BU also requires 11 
complex multipliers. Therefore, the existing architecture requires a total of 22 complex multipliers. In contrast, the proposed 
architecture requires five multipliers  
And 11 multipliers in the first stage and the third stage, respectively. Therefore, the proposed architecture in Fig. 2(c) has 16 
multipliers, while the existing architecture requires 22 multipliers for each data path. The proposed MRMDC in Fig. 1 has a total of 
128 (16× 8) multipliers because the processors have eight- parallel data paths, whereas the existing architecture requires 176 (22×8) 
multipliers. 

IV. PROPOSED 1024 POINT FFT PROCESSOR 
This subsection presents the proposed MRMDC 1024-point FFT processor. Fig. 3 shows the proposed processor that consists of 
four stages. The radix-2 BUs in the first stage are added to support the 512-point FFT compared with that shown in Fig. 1. The 
second, third, and fourth stages are the same, as shown in Fig. 1. The processor shown in Fig. 4 performs the 1024-point FFT, which 
is similar to the 256-point FFT in Fig. 2(c). As shown in Fig. 4. 

 
Fig 3: Block Diagram of 1024 –point FFT processor. 

The input sequence is split into eight-parallel data paths that are delayed to arrange the input data order in the first stage. Fig. 10 
redrawn from the dotted box in Fig. 3 shows one data path of the existing and proposed structures for the 1024-point FFT, 
respectively. As shown in Fig. 4, all the multipliers present in third stage are moved to the shared multipliers in the second stage as 
we proposed in Type III. 
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Fig 4: Structure of the proposed first and second stages of 1024 point FFT processor 

The SMSS shown in Fig. 5 can also be applied to the 1024-point FFT. To perform the 1024-point FFT, the proposed structure 
computes twiddle factor multiplications for the second stage using the shared multipliers on each parallel data path. By employing 
SMSS, the proposed processor can support both the 256- and 512-point FFTs. In addition, the proposed MRMDC can be applied to 
larger-size FFTs, such 2048, and 4096, using additional stages. For example, the 2048-point FFT processor consists of one radix-4 
BU, the shared multipliers, one radix-8 BU without multipliers, and two radix-8 BUs. 

V. RESULTS 
The multiplexer, radix 2, and radix 2/4 and modified radix-8BU can be designed in MATLAB Simulink as shown in figures 4,5and 
6. 
The first and second stage sf the 1024 Point FFT processor is modeled  in Verilog with RTL diagram as shown in Fig 9.then that 
processor operated in the cadence 45 nm technology to perform with high speed compared previous methods in [16],[17].The 
processor have the form of physical design as shown in fig 11. 

 
Fig 5: Multiplexer 2:1 

 

 
Fig 6: Radix-2 BU 
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Fig 7: Radix-2/4 BU. 

 

 
Fig 8: Modified Radix-8 BU. 

 
The proposed SMSS based FFT/IFFT processor using Shared multiplier is designed using Xilinx ISE14.2 tool and modeled in 
Verilog HDL. The proposed FFT processors use shared multiplier to improve computation speed. The synthesis result shows the 
area efficiency of propose processor and computation speed improvement. The proposed processor is simulated using Xilinx ISim 
simulator. The Radix Butterflies of processor is done using MATLAB Simulink Tool. SMSS 
based FFT/IFFT processor implemented using CADENCE 45nm technology by implementing in this technology we reduce area, 
delay or power. 

 
Fig 9:Proposed 1024 FFT Processor in XILINX. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                                   ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 

             Volume 5 Issue XI, November 2017- Available at www.ijraset.com 
 

34 ©IJRASET (UGC Approved Journal): All Rights are Reserved 
 

 
 Fig 10: Physical Design of 1024 point FFT processor.                   

VI. COMPARISONS 
Comparison for Hardware Complexities table 1: 

 
 

Performance Comparison Table 2: 
 

 
 
 
 
 
 
 
 
 
 

Technology Wise Comparison Table 3: 
 

 
 
 
 
Expecting that the processor have same throughput rate i.e. (64*clock rate) =36.48GS/s at 570 MHz clock rate. The equipment 
multifaceted nature and calculation speed are looked at in the execution table. The equipment intricacy is contrasted and the current 
SMSS based 256-point FFT processor as far as ASIC outline metric door check. The proportional door mean the proposed processor 
is gotten from the union report of Xilinx XST apparatus. The union report of proposed processor is appeared in figure 7.3.The 
combination report gives gadget use rundown as far as FPGA plan metric. With a specific end goal to think about regarding door 

processor Existing128 Proposed12
8 

Proposed 
1024 

Area(mm2) 11,82,099 3,56,810 20,21,796 

Power(uw) 1,41,630.8 8,97,534.5 37,34,251 
Timing(ns) 5.30 2.615 1.735 
Clock rate (MHz) 188 382 570 
Gate count 4,52,634 1,71,804 2,40,43,548 
Throughput(GS/s) 1.5 3.056 4.560 
TGR 0.0001856 0.0009961 0.000152 

 Cadence(180nm) Cadence(45nm) 
Area(mm2) 20,21,796 5,38,660 
Power(uw) 37,34,251 20,99,075 
Timing(ns) 1.735 0.001 
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check, the proportional entryway tally is figured in light of NAND entryways required to configuration cut registers, cut Look Up 
Tables (LUT's).The timing report gives the data about most extreme clock recurrence, way delay for the proposed processor.  
The performance comparison is shown in above table 1. From the above data conclusion is that the proposed processor can be 
performance effective by applying for re-configurability feature and multiplier using optimizes the area and delay for the FFT/IFFT 
processor. 

VII. CONCLUSION 
In this thesis report we proposed A Shared Multiplier for Effectual Area of 1024 Point Fast Fourier Transform Processor. This 
processor utilizes 28% of complex multipliers with reduced area. This processors have flexibility of different Fast Fourier  
Transform  sizes (2,4,8,16,3,64,128,256 and 512) of length, So that the hardware complexity reduced. The proposed mixed radix 
butterfly units can be designed in MATLAB SIMULINK. This processors verified by XILINX HDL tool modified with VERILOG 
language and implemented in 45-nm CMOS technology. The synthesis results shows that area reduce by 19% and achieve a high 
throughput rate up to 27.5GS/s at 530 MHz. In addition, the processor can support for any FFT sizes by addition of stages and 
works for inverse fast Fourier transform by simply taking conjugation of Fast Fourier Transform. 
In addition the proposed architecture can apply any FFT size greater than 256 point using additional stages. 
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