
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Distance Two Complementary Tree Domination Number of a Graph

S. Muthammai ${ }^{1}$, G. Ananthavalli ${ }^{2}$
${ }^{1}$ Alagappa Government Arts College, Karaikudi.
${ }^{2}$ Government Arts College for Women (Autonomous), Pudukkottai-622001, India.

Abstract

A set D of a graph $G=(V, E)$ is a dominating set, if every vertex in $V(G)-D$ is adjacent to some vertex in D. The domination number $\gamma(\boldsymbol{G})$ of \boldsymbol{G} is the minimum cardinality of a dominating set. A dominating set \boldsymbol{D} is called a distance two complementary tree dominating set,iffor each $u \in V-D, d(u, v) \leq 2$ for some v in D and also $\langle V-D>$ is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d 2 c t d}(G)$. In this paper, bounds for $\gamma_{d 2 c t d}(G)$ and its exact values for some particular classes of graphs are found. Some results on distance two complementary tree domination number are also established.

Keywords: complementary tree domination number, distance two complementary tree domination number.

I. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph with p vertices and q edges is denoted by $G(p, q)$. The concept of domination in graphs was introduced by Ore[6]. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a dominating set of G , if every vertex in $\mathrm{V}(\mathrm{G})-\mathrm{D}$ is adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(\mathrm{G})$. The problem of finding a minimal distance k -dominating set (call k-basis) was considered by Slater[7] with special reference to communication networks while the distance k -dominating set was defined by Henning etal. [4]. For an integer $\mathrm{k} \geq 1$, a set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is a distance k dominating set of G if every vertex in $V(G)-D$ is within distance k from some vertex $v \in D$. The minimum cardinality among all distance k -dominating sets of G is called the distance k -domination number of G and is denoted by $\gamma_{\mathrm{k}}(\mathrm{G})$.Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree dominating set. A dominating set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a complementary tree dominating set (ctd-set) if the induced subgraph $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{\mathrm{ctd}}(\mathrm{G})$. Any undefined terms in this paper may be found in Harary[1].
In this paper, bounds for $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})$ and its exact values for some particular classes of graphs are found. Also, the graphs for which $_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=1,2, \mathrm{p}-1$ or $\mathrm{p}-2$ are characterized.

II. PRIOR RESULTS

Theorem 2.1[5] For any connected graph $\mathrm{G}, \gamma(\mathrm{G}) \leq \gamma_{\text {ctd }}(\mathrm{G})$.
Theorem 2.2[5] For any connected graph G with $p \geq 2, \gamma_{\text {ctd }}(G) \leq p-1$.
Theorem 2.3[5] Let G be a connected graph with $\mathrm{p} \geq 4$. Then $\gamma_{\text {ctd }}(G)=p-1$ if and only if G is a star on p vertices.
Theorem 2.4[5] Let Tbe a tree with p vertices which is not a star. Then, $\gamma_{\text {ctd }}(\mathrm{T})=\mathrm{p}-2(\mathrm{p} \geq 5)$ if and only if T is a path or T is obtained from a path by attaching pendant edges at atleastone of the end vertices.
Theorem 2.5[5]Let Gbe a connected graph containing a cycle. Then, $\gamma_{\text {ctd }}(\mathrm{G})=\mathrm{p}-2(\mathrm{p} \geq 5)$ if and only if G is isomorphic to one of the following graphs $\mathrm{C}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}$ or G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.

III. MAIN RESULTS

In this section, a new parameter called distance two complementary tree domination numberis defined, bounds and exact values of this parameter are found.

A. Definition 3.1

A subset $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a distance two complementary tree dominating set (d2ctd-set), if for each $\mathrm{u} \in \mathrm{V}-\mathrm{D}, \mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$ for some v in D and also $\langle\mathrm{V}-\mathrm{D}\rangle$ is a tree. The minimum cardinality of adistance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})$.

1) Observation 3.1
a) Since any ctd-set is a d2ctd-set, $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G}) \leq \gamma_{\mathrm{ctd}}(\mathrm{G})$.

Equality holds if, $\mathrm{G} \cong \mathrm{P}_{\mathrm{n}} \mathrm{oK}$.
b) Since d2ctd-set is a distance two dominating set, $\gamma_{2}(\mathrm{G}) \leq \gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})$. Equality holds if, $\mathrm{G} \cong \mathrm{P}_{5}, \mathrm{C}_{5}$.
c) For any connected graph G with p vertices, $1 \leq \gamma_{d 2 c t d}(G) \leq p-1$, since $\gamma_{c t d}(G) \leq p-1$.
2) Theorem 3.1: For any connected graph $\mathrm{G}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\mathrm{p}-1, \mathrm{p} \geq 2$ if and only if $\mathrm{G} \cong \mathrm{K}_{2}$.
3) Proof: : By the Observation 3.1, $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G}) \leq \gamma_{\mathrm{ctd}}(\mathrm{G})$.

If $\gamma_{d 2 c t d}(G)=p-1$, then $\gamma_{c t d}(G) \geq p-1$. But $\gamma_{c t d}(G) \leq p-1$ and $\gamma_{c t d}(G)=p-1$ if and only if $G \cong K_{1, p-1}$ If $p \geq 3$, then $\gamma_{d 2 c t d}\left(K_{1}\right.$, $\mathrm{p}-1)=1<\mathrm{p}-1$.
Therefore $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\mathrm{p}-1$, if $\mathrm{p}=2$, Hence $\mathrm{G} \cong \mathrm{K}_{2}$.
Conversely if $\mathrm{G} \cong \mathrm{K}_{2}$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=1=\mathrm{p}-1$.
B. Observation 3.2

1) For any path P_{p} on p vertices, $\gamma_{d 2 c t d}(G)=p-4, p \geq 6$.
$\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{P}_{3}\right)=1, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{P}_{4}\right)=\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{P}_{5}\right)=2$.
2) For any cycle C_{p} on p vertices, $\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{C}_{\mathrm{p}}\right)=\mathrm{p}-4, \mathrm{p} \geq 5$.
$\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{C}_{3}\right)=\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{C}_{4}\right)=1$.
If $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$ be any four consecutive vertices of degree 2 in $\mathrm{P}_{\mathrm{p}}\left(\right.$ or $\left.\mathrm{C}_{\mathrm{p}}\right), \mathrm{V}\left(\mathrm{P}_{\mathrm{p}}\right)-\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ (or $\left.\mathrm{V}\left(\mathrm{C}_{\mathrm{p}}\right)-\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}\right)$ is a $\gamma_{\mathrm{d} 2 \text { ctd }}{ }^{-}$ set of $\mathrm{P}_{\mathrm{p}}\left(\right.$ or $\left.\mathrm{C}_{\mathrm{p}}\right)$.
3) For any star $\mathrm{K}_{1, \mathrm{p}-1,}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{K}_{1, \mathrm{p}-1}\right)=1$.
4) For any complete graph $\mathrm{K}_{\mathrm{p}}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}-2, \mathrm{p} \geq 3$.
5) For any complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{m}-1, \mathrm{n} \geq \mathrm{m} \geq 2$.
6) $\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\overline{\mathrm{mK}_{2}}\right)=2 \mathrm{~m}-3, \mathrm{~m} \geq 2$.
7) For the graph $K_{p}-e, \gamma_{d 2 c t d}\left(K_{p}-e\right)=p-3$, where e is an edge in K_{p}.
8) For the graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}-\mathrm{e}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}-\mathrm{e}\right)=\min \{\mathrm{m}, \mathrm{n}\}-1$.
9) For the graph $\overline{\mathrm{K}_{\mathrm{m}, \mathrm{n}^{-}} \mathrm{e}}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\overline{\mathrm{K}_{\mathrm{m}, \mathrm{n}^{-}} \mathrm{e}}\right)=\mathrm{m}+\mathrm{n}-4$.
10) $\gamma_{d 2 c t d}\left(\mathrm{P}_{\mathrm{n}} \circ \mathrm{K}_{1}\right)=\mathrm{n}$.
11) $\gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{C}_{\mathrm{n}} \mathrm{O}_{1}\right)=\mathrm{n}-1, \mathrm{n} \geq 3$.
C. Observation 3.3
12) For the Fan $\mathrm{F}_{\mathrm{p}}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{F}_{\mathrm{p}}\right)=1$, where $\mathrm{F}_{\mathrm{p}}=\mathrm{P}_{\mathrm{p}-1}+\mathrm{K}_{1}(\mathrm{p} \geq 3)$.
13) For the Wheel $\mathrm{W}_{\mathrm{p}}, \gamma_{\mathrm{d} 2 \mathrm{ctd}}\left(\mathrm{W}_{\mathrm{p}}\right)=2$, where $\mathrm{W}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}-1}+\mathrm{K}_{1}(\mathrm{p} \geq 3)$.
D. Definition 3.2

The one point union $\mathrm{C}_{\mathrm{n}}^{(\mathrm{t})}$ of t -copies of cycle C_{n} is the graph obtained by taking a new vertex u as a common vertex such that any two distinct cycles C_{i} and C_{j} are edge disjoint and do not have any vertex in common except u.

E. Observation 3.4

For $\mathrm{t} \geq 2$ and $\mathrm{n} \geq 4, \gamma_{\text {ctnd }}\left(\mathrm{C}_{\mathrm{n}}^{(\mathrm{t})}\right)=\left\{\begin{array}{rrr}\mathrm{t}, & \text { if } & \mathrm{n} \leq 5 \\ (\mathrm{n}-5) \mathrm{t}+1, & \text { if } \mathrm{n}>5 .\end{array}\right.$
F. Definition 3.3

Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{k}}$ be k copies of a graph G , where $\mathrm{k} \geq 2$. $\mathrm{G}(\mathrm{k})$ is a graph obtained by adding an edge from G_{i} to $\mathrm{G}_{\mathrm{i}+1} ; \mathrm{i}=1,2,3, \ldots$, $k-1$ and the graph $G(k)$ is called the path union of k copies of the graph G.

G. Observation 3.5

Let $C_{n}(t), t \geq 2, n \geq 3$ be the path union of t cycles of length n. Then $\gamma_{\text {ctrd }}\left(C_{n}(t)\right)= \begin{cases}t, & \text { if } \mathrm{n} \leq 5 \\ (n-4) t, & \text { if } \mathrm{n}>5 .\end{cases}$

H. Definition 3.4

A t-ply $\mathrm{P}_{\mathrm{t}}(\mathrm{u}, \mathrm{v})$ is a graph with t paths joining vertices u and v , each of length atleast two and no two paths have a vertex in common except the end vertices u and v in $P_{t}(u, v)$.
I. Observation 3.6
$\gamma_{\text {cnd }}\left(\mathrm{P}_{\mathrm{t}}(\mathrm{u}, \mathrm{v})\right)=\mathrm{p}-2 \mathrm{t}$, where p is the number of vertices in $\mathrm{P}_{\mathrm{t}}(\mathrm{u}, \mathrm{v})$.

J. Observation 3.7

For the graph G , there is no relationship between $\gamma(\mathrm{G})$ and $\gamma_{\mathrm{dzctd}}(\mathrm{G})$ is not true in general. This is illustrated by the following example.

K. Example 3.1.

For the graph given in Figure 3.1, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ is a γ-set of G and hence $\gamma(\mathrm{G})=3$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is a $\gamma_{\mathrm{d} 2 \text { ctd }}$-set of Gand $\gamma_{\mathrm{dzcti}}(\mathrm{G})=2$. Therefore $\gamma(\mathrm{G})>\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})$.

Figure 3.1
For the graph given in Figure 3.2, $\left\{\mathrm{v}_{3}, \mathrm{v}_{10}\right\}$ is a γ-set of G and hence $\gamma(\mathrm{G})=2$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is a $\gamma_{\mathrm{d} 2 \text { ctd }}$-set of G and $\gamma_{\mathrm{d} 2 \mathrm{cta}}(\mathrm{G})=2$. Therefore $\gamma(\mathrm{G})=\gamma_{\mathrm{dzctd}}(\mathrm{G})$.

Figure 3.2
For the graph given in Figure 3.3, $\left\{\mathrm{v}_{7}\right\}$ is a γ-set of G and hence $\gamma(\mathrm{G})=1$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{7}\right\}$ is a $\gamma_{\mathrm{d} 2 \text { ctd }}$-set of G and $\gamma_{\mathrm{dzctd}}(\mathrm{G})=2$.
Therefore $\gamma(\mathrm{G})<\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})$.

Figure 3.3

L. Theorem 3.2

Let G be a connected graph. Then $\gamma_{\mathrm{d} 2 \text { ctd }}(\mathrm{G})=1$ if and only if there exists a vertex $\mathrm{u} \in \mathrm{G}$ such that $\mathrm{G}-\mathrm{u}$ is a tree and $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$, for all $v \in G-u$.

M. Proof.

Let there exist vertex $\mathrm{u} \in \mathrm{G}$ such that $\mathrm{G}-\mathrm{u}$ is a tree and $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$, for all $\mathrm{v} \in \mathrm{G}-\mathrm{u}$. Let $\mathrm{D}=\{\mathrm{u}\}$. Since $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$, for all $\mathrm{v} \in \mathrm{G}-\mathrm{u}$, D is a 2-distance dominating set of G . Also, since $\mathrm{G}-\mathrm{u}$ is a tree, D is a complementary tree dominating set. Therefore D is a d2ctdset of G and hence $\gamma_{d 2 c t d}(G)=1$.
Conversely, assume $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=1$. Let D be a d2ctd-set of G such that $|\mathrm{D}|=1$. Then $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle$ is a tree and all the vertices of $\mathrm{V}(\mathrm{G})-\mathrm{D}$ are at a distance ≤ 2 from the vertex of D .

N. Example 3.2

For the graphs given in Figure $3.4, \gamma_{\mathrm{d} 2 \mathrm{ct}}(\mathrm{G})=1$.

Figure 3.4

O. Remark 3.1

Let v be a support of G with minimum number t of pendant vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{t}}$ such that $\mathrm{T}=\mathrm{G}-\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{t}}\right\}$ is a tree and each vertex of T is of distance atleast 2 from v. Then $\gamma_{d 2 c t d}(G) \leq t+1$.

P. Theorem 3.3

Let G be connected graph with atleast three vertices. Then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=2$ if and only if there exist two vertices u and v such that $\mathrm{G}-$ $\{u, v\}$ is a tree and each vertex in $G-\{u, v\}$ is at distance at most 2 from atleast one u and v and if atleast one of the following holds
(i) $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-\{\mathrm{v}\}$ is not a tree.
(ii) $\mathrm{d}(\mathrm{u}, \mathrm{v}) \geq 3$.

1) Proof.Assume $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=2$.

Then there exists a d2ctd-set D of G such that $|\mathrm{D}|=2$.
Let $D=\{u, v\}$, where $u, v \in V(G)$.
Then $\mathrm{G}-\{\mathrm{u}, \mathrm{v}\}$ is a tree and each vertex in $\mathrm{G}-\{\mathrm{u}, \mathrm{v}\}$ is at distance atmost 2 from atleast one of u and v . If $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-$ $\{\mathrm{v}\}$ is tree or $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$, then $\{\mathrm{u}\}$ or $\{\mathrm{v}\}$ is a d2ctd-set of G .

Therefore $\mathrm{G}-\{\mathrm{u}\}$ or $\mathrm{G}-\{\mathrm{v}\}$ is not a tree and $\mathrm{d}(\mathrm{u}, \mathrm{v}) \geq 3$.
Conversely, if the conditions given in the theorem holds, then $D=\{u, v\}$ is a d2ctd-set of G and hence $\gamma_{d 2 c t d}(G) \leq 2$. Also $\gamma_{d 2 c t d}(G)$ $\neq 1$. Hence $_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=2$.
Q. Example 3.3

For the graphs given in Figure $3.5, \gamma_{\mathrm{d} 2 \mathrm{ct}}(\mathrm{G})=2$.

Figure 3.5

R. Theorem 3.4

For any connected graph G with atleast three vertices $\gamma_{d 2 c t d}(G)=p-2$ if and only if $G \cong P_{3}, P_{4}, K_{p}, p \geq 3$.

1) Proof. Assume $\gamma_{d 2 c t d}(G)=p-2$.

Since by the Observation $3.1, \gamma_{d 2 c t d}(G) \leq \gamma_{c t d}(G)$. That is, $p-2 \leq \gamma_{c t d}(G)$. Therefore, $\gamma_{c t d}(G)=p-1$ or $p-2$, Since $\gamma_{\mathrm{ctd}}(\mathrm{G}) \leq \mathrm{p}-1$.
2) Case 1. $\gamma_{c t d}(\mathrm{G})=\mathrm{p}-1$.

Then $G \cong K_{1, p-1, p} \geq 3$
But $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=1=\mathrm{p}-2$ implies $\mathrm{p}=3$.
Therefore $\mathrm{G} \cong \mathrm{K}_{1,2} \cong \mathrm{P}_{3}$.
3) Case 2. $\gamma_{d 2 c t d}(\mathrm{G})=\mathrm{p}-2$.
a) Subcase 2.1.G is a tree.

By Theorem 2.4, G is a path or G is a tree obtained from a path by attaching pendant edges at atleast one of the end vertices.
If G is a path P_{p}, then $\gamma_{d 2 c t d}(G)=\left\{\begin{array}{cc}p-4 & \text { if } p \geq 6 \\ 2 & \text { if } p=4,5 \\ 1 & \text { if } p=3 .\end{array}\right.$
$\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\mathrm{p}-2$ implies $\mathrm{G} \cong \mathrm{P}_{4}$ or P_{3}.
Let G be a tree obtained from a path $P_{n,}, n<p$ by attaching pendant edges at atleast one of the end vertices.
If $\mathrm{n} \leq 4$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=2 \neq \mathrm{p}-2$.
If $\mathrm{n} \geq 5$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\mathrm{p}-5$.
b) Subcase 2.2.

By Theorem 2.5, G is isomorphic to (i) C_{p} (ii) K_{p} or (iii) G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.
If $G \cong C_{p}, \gamma_{d 2 c t d}(G)=\left\{\begin{array}{cl}p-4, & \text { if } p \geq 5 \\ 1 & \text { if } p=3,4 .\end{array}\right.$
Therefore $\mathrm{G} \cong \mathrm{C}_{3}$.
If $G \cong K_{p}$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\mathrm{p}-2$.
Let G be the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph
$K_{n,} n<p$. Then G contains an induced $P_{3} \operatorname{andV}(G)-V\left(P_{3}\right)$ is a d2ctd-set of G and hence $\gamma_{d 2 c t d}(G) \leq p-3$.
From Case 1 and Case 2, $G \cong P_{3}, P_{4}, K_{p} . p \geq 3$.
c) Remark 3.2

Let G be a graph such that both G and its complement $\overline{\mathrm{G}}$ are connected. Then,
a) $4 \leq \gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})+\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\overline{\mathrm{G}}) \leq 2(\mathrm{p}-2)$
b) $4 \leq \gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G}) \cdot \gamma_{\mathrm{d} 2 \mathrm{ctd}}(\overline{\mathrm{G}}) \leq(\mathrm{p}-2)^{2}$.

Both lower and upper bounds are attained, if G is a path on 4 vertices.

REFERENCES

[1] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972
[2] T. W. Haynes, S. T. Hedetnimi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Decker, (1998).
[3] M.A. Henning, Distance domination in Graphs, in : T.W. Haynes, S.T. Hedetnimi, P. J. Slater Ed., Domination in Graphs : Advanced Topics, Marcel Dekkar, NewYork, (1998), 321-349.
[4] M.A. Henning, O.R Swart and H. C. Swart, Bounds on Distance Domination Parameters, J.Combin . Inform. System Sci., 16, (1991), 11-18.
[5] S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree domination in graphs, International Mathematical Forum, Vol. 6, 2011, 26, 1273-1283
[6] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, (1962).
[7] P. J. Slater, R-Domination in Graphs, Journal of Association for Computer Machinery, 23(3), (1976), 446-450.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

