
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Complementary Tree Domination number and Distance two Complementary Tree Domination number of Cartesian Product of Graphs

S. Muthammai ${ }^{1}$, G. Ananthavalli ${ }^{2}$
${ }^{1}$ Government Arts and Science College, Kadaladi,Ramanathapuram-623703, India.
${ }^{2}$ Government Arts College for Women (Autonomous), Pudukkottai-622001, India.

Abstract

A set D of a graph $G=(V, E)$ is a dominating set, if every vertex in $V(G)-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraph $\langle V(G)-D>i s$ a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{\text {ctd }}(G) . A$ dominating set D is called a distance two complementary tree dominating set, if for each $u \in V(G)-D$, there exists a vertex $v \in D$ such that $d(u, v) \leq 2$ and also $<V(G)-$ $D>$ is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d 2 c t d}(G)$.In this paper, complementary tree domination numbers and distance two complementary tree domination number of cartesian product of some standard graphs are found. Key words: Domination number, complementary tree domination number, distance two complementary tree domination number, Cartesian product.

I. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph G with p vertices and q edges is denoted by $G(p, q)$. The concept of domination in graphs was introduced by Ore[5]. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a dominating set of G , if every vertex in $\mathrm{V}(\mathrm{G})-\mathrm{D}$ is adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(\mathrm{G})$. Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree dominating set. A dominating set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraph $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{\text {ctd }}(G)$.
The cartesian product of two graphs G_{1} and G_{2} is the graph, denoted by $G_{1} \times G_{2}$ with $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)($ where \times denotes the cartesian product of sets) and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V\left(G_{1} \times G_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever $\left[u_{1}=v_{1}\right.$ and $\left.\left(u_{2}, v_{2}\right) \in E\left(G_{2}\right)\right]$ or $\left[u_{2}=v_{2}\right.$ and $\left.\left(u_{1}, v_{1}\right) \in E\left(G_{1}\right)\right]$.
The concept of distance two complementary tree dominating set is introduced in [4]. A dominating set D is called a distance two complementary tree dominating set, if for each $u \in V(G)-D$, there exists a vertex $v \in D$ such that $d(u, v) \leq 2$, and also $\langle V(G)-D>$ is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d 2 c t d}(G)$.
In this paper, complementary tree domination number and distance two complementary tree domination number of $K_{m} \times K_{n}, K_{m} \times$ $P_{n}, K_{m} \times C_{n}, C_{3} \times P_{n}, C_{4} \times P_{n}, C_{5} \times P_{n}, C_{6} \times P_{n}, C_{3} \times C_{n}, C_{4} \times C_{n}, C_{5} \times C_{n}$ and $C_{6} \times C_{n a r e}$ found.Any undefined terms in this paper may be found in Harary[2].

II. COMPLEMENTARY TREE DOMINATION NUMBER OF CARTESIAN PRODUCT OF GRAPHS

A. Theorem 2.1

If $G \cong K_{m} \times K_{n}(m, n \geq 3$ and $m \leq n)$, then $\gamma_{c t d}(G)= \begin{cases}m(n-2)+1, & \text { if } m=n \\ m(n-2), & \text { if } m<n\end{cases}$
B. Proof.

Let $\mathrm{G} \cong \mathrm{K}_{\mathrm{m}} \times \mathrm{K}_{\mathrm{n}}$
Let $V(G)=U_{i=1}^{m}\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n}\right\}$ such that $<\left\{v_{i 1}, v_{i 2}, \ldots, v_{\text {in }}\right\}>\cong K_{n}^{i}, i=1,2, \ldots, m$ and $<\left\{v_{1 j}, v_{2 j}, \ldots, v_{m j}\right\}>\cong K_{m}^{j}, j=1,2, \ldots$, n, where K_{n}^{i} is the $i^{\text {th }}$ copy of K_{n} and K_{m}^{j} is the $j^{\text {th }}$ copy of K_{m} in $K_{m} \times K_{n} .|V(G)|=m n$.
C. Case 1: $m=n$.
et $D^{\prime}=\left(U_{i=1}^{m-1}\left\{v_{i i}, v_{i, i+1}\right\}\right) \cup\left\{v_{m, m}\right\}$ and $D=V(G)-D^{\prime}$. Then $V(G)-D=D^{\prime}$ and $\left|D^{\prime}\right|=2(m-1)+1=2 m-1$. For $i=1,2,3, \ldots, m-1$, the verticesv $v_{i i}, v_{i, i+1}$ in $V(G)-D$ are adjacent to $v_{i 1} i n D$, and the vertex $v_{m m}$ is adjacent to $v_{m 1}$ in D. Therefore D is a dominating set of G. $\langle V(G)-D\rangle \cong P_{2(m-1)+1}=P_{2 m-1}$. SinceD is a ctd-set of G. Hence $\gamma_{c t d}(G) \leq|D|=|V(G)|-\left|D^{\prime}\right|=m n-(2 m-1)=m(n-2)+1$.

It is to be noted that, any tree in G is a path. Let D^{\prime} be a $\gamma_{c t d}{ }^{-s e t}$ of G. The longest path that can be obtained from the subgraph of G induced by the vertices of $V(G)-D^{\prime}$ is $P_{2 m-1}$. That is, $\left\langle V(G)-D^{\prime}\right\rangle \cong P_{2 m-1} D^{\prime}$ contains atleast $m n-(2 m-1)=m(n-2)+1$ vertices. Therefore $\gamma_{\text {ctd }}(G)=\left|D^{\prime}\right| \geq m(n-2)+1$.
Hence $\gamma_{\text {ctd }}(G)=m(n-2)+1$.
D. Case 2: $\mathrm{m}<\mathrm{n}$.

Let $\mathrm{D}^{\prime}=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{m}}\left\{\mathrm{v}_{\mathrm{ii}}, \mathrm{v}_{\mathrm{i}, \mathrm{i}+1}\right\}$ and $\mathrm{D}=\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}$. Then $\mathrm{V}(\mathrm{G})-\mathrm{D}=\mathrm{D}^{\prime}$ and $\left|\mathrm{D}^{\prime}\right|=2 \mathrm{~m}$. The vertices $\mathrm{v}_{11}, \mathrm{v}_{12}$ are adjacent to $\mathrm{v}_{1 \mathrm{n}}$ and $v_{i i}, v_{i, i+1}(i=2,3, \ldots, m)$ are adjacent to $v_{i 1},(i=2,3, \ldots, m)$ in D. Therefore D is a dominating set of G. Since $\left\langle V(G)-D>\cong P_{2 m, D}\right.$ is a ctd-set of G. Therefore $\gamma_{c t d}(G) \leq|V(G)|-\left|D^{\prime}\right|=m n-2 m=m(n-2)$.
As in case 1 , any tree in G is a path. Let D^{\prime} be $\gamma_{\text {ctd }}$-set of G . The longest path that can be obtained from the subgraph of G induced by the vertices of $V(G)-D^{\prime}$ is $P_{2 m}$.
That is $\left\langle V(G)-D^{\prime}\right\rangle \cong P_{2 m}$. Therefore D^{\prime} contains atleast $m n-2 m=m(n-2)$ vertices. Therefore $\gamma_{c t d}(G)=\left|D^{\prime}\right| \geq m(n-2)$.
Therefore $\gamma_{\text {ctd }}(G)=m(n-2)$.
Hence $\gamma_{c t d}(G)=\left\{\begin{array}{ll}m(n-2)+1, & \text { if } m=n \\ m(n-2), & \text { if } m<n\end{array}\right.$.

E. Remark 2.1

The set D defined in Case 1 and Case 2 is also a d2ctd-set of G. Since any vertex u in D which is at distance two from a vertex of D, $<(\mathrm{V}(\mathrm{G})-\mathrm{D}) \cup\{\mathrm{u}\}>$ either disconnected or contains cycle.

F. Example 2.1

For the graph G given in Figure 1.a and Figure 1.b, the set of vertices marked with is a minimum ctd-set of $\chi_{m} \times K_{n}$ and $\gamma_{c t d}\left(K_{4} \times\right.$ $\left.\mathrm{K}_{4}\right)=9$ and $\gamma_{\text {ctd }}\left(\mathrm{K}_{4} \times \mathrm{K}_{5}\right)=12$.

Figure 1.a

Figure 1.b
G. Theorem 2.2.

If $\mathrm{G} \cong \mathrm{K}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}(4 \leq \mathrm{m} \leq \mathrm{n})$, then $\gamma_{\mathrm{ctd}}(\mathrm{G})=\mathrm{n}(\mathrm{m}-2)$.

1) Proof.

Let $V(G)=\bigcup_{i=1}^{m}\left\{v_{i 1}, v_{i 2}, \ldots, v_{\text {in }}\right\}$ such that $<\left\{v_{i 1}, v_{i 2}, \ldots, v_{\text {in }}\right\}>\cong K_{n}^{i}, i=1,2, \ldots, m$ and $<\left\{v_{1 j}, v_{2 j}, \ldots, v_{m j}\right\}>\cong P_{m}^{j}, j=1,2, \ldots$, n, where K_{n}^{i} is the $i^{\text {th }}$ copy of K_{n} and P_{m}^{j} is the $j^{\text {th }}$ copy of P_{m} in $K_{m} \times P_{n}$.

Then $\left|D^{\prime}\right|=2$ n. If $\mathrm{D}=\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}$, then D is a dominating set of G . Also $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle=\left\langle\mathrm{D}^{\prime}\right\rangle \cong \mathrm{P}_{\mathrm{n}}{ }^{\circ} \mathrm{K}_{1}$. Therefore D is a ctd-set of G and $\gamma_{\text {ctd }}(\mathrm{G}) \leq|\mathrm{D}|=\mathrm{mn}-2 \mathrm{n}=\mathrm{n}(\mathrm{m}-2)$.
Hence $\gamma_{\text {ctd }}(\mathrm{G}) \leq \mathrm{n}(\mathrm{m}-2)$.
Let D^{\prime} be a $\gamma_{\text {ctd }}$-set of G . Since D^{\prime} is a ctd-set of G , D^{\prime} contains atleast $(\mathrm{m}-2)$ vertices in each of n copies of K_{m}. Hence D^{\prime} contains atleast $\mathrm{n}(\mathrm{m}-2)$ vertices. Therefore $\gamma_{\mathrm{ctd}}(\mathrm{G})=\left|\mathrm{D}^{\prime}\right| \geq \mathrm{n}(\mathrm{m}-2)$.
Hence $\gamma_{\text {ctd }}(G)=n(m-2)$.

H. Example 2.2.

For the graph G given in Figure 2, the set of vertices marked with is a minimum ctd-set of $\mathrm{K}_{\mathrm{m}} \times \widehat{\sigma}_{\mathrm{n}}$ and $\gamma_{\mathrm{ctd}}\left(\mathrm{K}_{4} \times \mathrm{K}_{9}\right)=18$.

Fiaure 2

I. Theorem 2.3.

$\mathrm{G} \cong \mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\mathrm{ctd}}(\mathrm{G})=\mathrm{n}, \mathrm{n} \geq 1$.

1) Proof.

Let $\mathrm{G} \cong \mathrm{C}_{3} \times \mathrm{P}_{\mathrm{n}}$.
Let $V(G)=\bigcup_{i=1}^{n}\left\{v_{1 i}, v_{2 i}, v_{3 i}\right\}$ such that $<\left\{v_{i 1}, v_{i 2}, \ldots, v_{\text {in }}\right\}>\cong P_{n}^{i}, i=1,2,3$ and $<\left\{v_{1 j}, v_{2 j}, v_{3 j}\right\}>\cong C_{3}^{j}, j=1,2, \ldots$, n, where P_{n}^{i} is the $i^{\text {th }}$ copy of P_{n} and C_{3}^{j} is the $j^{\text {th }}$ copy of C_{3} in $C_{3} \times P_{n}$.
Let $D=\left\{\begin{array}{c}\left\{v_{1 n}\right\} \cup\left[U_{i=1}^{\frac{n-1}{2}}\left\{v_{1,2 i-1}, V_{3,2 i}\right\}\right], \text { if } n \text { is odd } \\ U_{i=1}^{\frac{n}{2}}\left\{v_{1,2 i-1,}, v_{3,2 i}\right\}, \text { if } n \text { is even }\end{array}\right.$
Then D is a dominating set of G. Also $\left\langle V(G)-D>\cong P_{n}{ }^{\circ} K_{1}\right.$.Therefore D is a ctd-set of G and $| D \mid=$ $\left\{\begin{array}{ll}2\left(\frac{n-1}{2}\right)+1=n, & \text { if } n \text { is even } \\ 2\left(\frac{n}{2}\right)=n, & \text { if } n \text { is odd }\end{array}\right.$ and $\gamma_{\text {ctd }}(G) \leq|D|=n$.
Let D^{\prime} be $a \gamma_{\text {ctd }}$-set of G. Then D^{\prime} contains atleast one vertex from each cycle. Since $C_{3} \times P_{n}$ contains n copies of C_{3}, D^{\prime} contains atleast n vertices. $\gamma_{\mathrm{ctd}}(\mathrm{G})=\left|\mathrm{D}^{\prime}\right| \geq \mathrm{n}$.
Hence $\gamma_{\mathrm{ctd}}(\mathrm{G})=\mathrm{n}, \mathrm{n} \geq 1$.

J. Theorem 2.4.

If $\mathrm{G} \cong \mathrm{C}_{4} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\text {ctd }}(\mathrm{G})=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor, \mathrm{n} \geq 1$.
Let $G \cong C_{4} \times P_{n}$ and $V(G)=U_{i=1}^{n}\left\{v_{1 i}, v_{2 i}, v_{3 i}, v_{4 i}\right\}$ such that $<\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n}\right\}>\cong P_{n}^{i}, i=1,2,3,4$ and $<\left\{v_{1 j}, v_{2 j}, v_{3 j}, v_{4 j}\right\}>\cong C_{4}^{j}$, $j=1,2, \ldots, n$, where P_{n}^{i} is the $i^{\text {th }}$ copy of P_{n} and C_{4}^{j} is the $j^{\text {th }}$ copy of C_{4} in $C_{4} \times P_{n}$ and $|V(G)|=4 n$.

Let $D^{\prime}=\left\{\mathrm{v}_{3 l}\right\} \cup\left[\mathrm{U}_{\mathrm{i}=1}^{\frac{\mathrm{n}-1}{2}}\left\{\mathrm{v}_{1,2 \mathrm{i}}, \mathrm{v}_{4,2 \mathrm{i}}, \mathrm{v}_{3,2 \mathrm{i}+1}\right\}\right] \cup\left[\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{v}_{2 \mathrm{i}}\right\}\right]$.
Then $\left|\mathrm{D}^{\prime}\right|=1+3\left(\frac{\mathrm{n}-1}{2}\right)+\mathrm{n}=\frac{5 \mathrm{n}-1}{2}$ and $\mathrm{D}=\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}$. Then D is a dominating set of G . Also $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle=\left\langle\mathrm{D}^{\prime}\right\rangle$ is a tree obtained from the path $P_{n}=<\left\{v_{2, i} i=1,2,3, \ldots, n\right\}>,(n \geq 2)$ by attaching P_{3} at each of the vertices $v_{22}, v_{24}, v_{26}, \ldots, v_{2, n-1}$ and attaching a pendant edge at each of the vertices $\mathrm{v}_{21}, \mathrm{v}_{23} \ldots, \mathrm{v}_{2, \mathrm{n}}$. Therefore D is a ctd-set of G , and

$$
\gamma_{\mathrm{ctd}}(\mathrm{G}) \leq|\mathrm{D}|=\left|\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}\right|=4 \mathrm{n}-\left(\frac{5 \mathrm{n}-1}{2}\right)=\frac{3 \mathrm{n}+1}{2} .
$$

Hence $\gamma_{\text {ctd }}(\mathrm{G}) \leq \frac{3 \mathrm{n}+1}{2}=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor$.
Let D^{\prime} be a $\gamma_{\text {ctd }}$-set of G . The blocks A, B, A^{2} and $\mathrm{A}^{2} \mathrm{~B}$ are constructed as given below.

Figure 3
G is obtained by concatenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}} B$. The vertices with the symbol in each of the blocks represent the vertice@hat are to be included in D'
Therefore D^{\prime} contains atleast 3 vertices from each block A of $A^{\frac{n-1}{2}}$ and atleast 2 vertices from block B.
Therefore $\gamma_{\text {ctd }}(G)=\left|D^{\prime}\right| \geq 2+3\left(\frac{\mathrm{n}-1}{2}\right)=\frac{3 \mathrm{n}+1}{2}=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor$.
Hence $\gamma_{\text {ctd }}(G)=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor, \mathrm{n} \geq 1$.
, $\left.\left.\mathrm{v}_{3,2 \mathrm{i}-1}\right\}\right] \cup\left[\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{v}_{2 \mathrm{i}}\right\}\right]$ and $\mathrm{D}=\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}$. Then $\left|\mathrm{D}^{\prime}\right|=3\left(\frac{\mathrm{n}}{2}\right)+\mathrm{n}=\frac{5 \mathrm{n}}{2}$. Then D is a dominating set of G . Also $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle=\left\langle\mathrm{D}^{\prime}\right\rangle$ is a tree obtained from the path $P_{n}=<\left\{v_{2 i}, i=1,2,3, \ldots, n\right\}>,(n \geq 2)$ by attaching P_{3} at each of the vertices $v_{22}, v_{24}, v_{26}, \ldots$, and $v_{2, n}$ and attaching a pendant edge at each of the vertices $v_{21}, v_{23} \ldots$, and $v_{2, n-1}$. Therefore D is a ctd-set of G and $\gamma_{\text {ctd }}(G) \leq|D|=\mid V(G)-$ $\mathrm{D}^{\prime} \left\lvert\,=4 \mathrm{n}-\left(\frac{5 \mathrm{n}}{2}\right)=\frac{3 \mathrm{n}}{2}\right.$.
Hence $\gamma_{\mathrm{ctd}}(\mathrm{G}) \leq \frac{3 \mathrm{n}}{2}=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor$.
Let D^{\prime} be a $\gamma_{\text {ctd }}$-set of G.The block A is constructed as in Case 1.
ThenG $\cong A^{\frac{n}{2}}$. The vertices with the symbol in each of the blogs represent the vertices that are to be included in D^{\prime}.
Therefore D^{\prime} contains atleast 3 vertices from each block A of $A^{\frac{n}{2}}$. Therefore $\gamma_{\text {ctd }}(G)=\left|D^{\prime}\right| \geq 3\left(\frac{n}{2}\right)=\frac{3 n}{2}=\left\lfloor\frac{3 n+1}{2}\right\rfloor$.
Hence $\gamma_{\text {ctd }}(G)=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor, \mathrm{n} \geq 1$.
K. Theorem 2.5

If $\mathrm{G} \cong \mathrm{C}_{5} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\text {ctd }}(\mathrm{G})=2 \mathrm{n}, \mathrm{n} \geq 3$.

L. Proof

Let $G \cong C_{5} \times P_{n}$ and $V(G)=\bigcup_{i=1}^{n}\left\{v_{1 i}, v_{2 i}, v_{3 i}, v_{4 i}, v_{5 i}\right\}$ such that $<\left\{v_{i 1}, v_{i 2}, \ldots, v_{\text {in }}\right\}>\cong P_{n}^{i}, i=1,2,3,4,5$ and $<\left\{v_{1 j}, v_{2 j}, v_{3 j}, v_{4 j}, v_{5 j}\right\}>$ $\cong C_{5}^{j}, j=1,2, \ldots, n$, where P_{n}^{i} is the $i^{\text {th }}$ copy of P_{n} and C_{5}^{j} is the $j^{\text {th }}$ copy of C_{5} in $C_{5} \times P_{n} .|V(G)|=5 n$.

Let $D=\left\{\begin{array}{c}{\left[U_{i=1}^{\frac{n+1}{2}}\left\{v_{1,2 i-1}, v_{5,2 i-1}\right\}\right] \cup\left[U_{i=2}^{\frac{n-1}{2}}\left\{v_{3,2 i, i}, v_{4,2 i},\right\}\right], \text { if } n \text { is odd }} \\ U_{i=2}^{\frac{n}{2}}\left\{v_{1,2 i-1,}, v_{3,2 i}, v_{4,2 i}, v_{5,2 i-1}\right.\end{array}\right\}$, if n is even.
Then D is a dominating set of G and also $\left\langle V(G)-D>\right.$ is a tree obtained from the path $P_{n}=<\left\{v_{2, i}, i=1,2,3, \ldots, n\right\}>,(n \geq$ 2) by attaching P_{3} at each of the vertices $v_{21}, v_{22}, v_{23}, \ldots$, and $v_{2, n}$ Therefore D is a ctd-set of G.
and $|D|=\left\{\begin{array}{c}2\left(\frac{n+1}{2}\right)+2\left(\frac{n-1}{2}\right)=2 n, \text { if } n \text { is even } \\ 4\left(\frac{n}{2}\right)=2 n, \quad \text { if } n \text { is odd. }\end{array}\right.$
Therefore $\gamma_{\text {ctd }}(\mathrm{G}) \leq\left|\mathrm{D}^{\prime}\right|=2 \mathrm{n}$.
Let D' be a $\gamma_{\text {ctd }}$-set of G. Since $\gamma\left(\mathrm{C}_{5}\right)=2$, D' contains atleast 2 vertices from each of n cycles and hence D^{\prime} contains atleast 2 n vertices. Therefore $\gamma_{\mathrm{ctd}}(\mathrm{G})=\left|\mathrm{D}^{\prime}\right| \geq 2 \mathrm{n}$.
Hence $\gamma_{\text {ctd }}(\mathrm{G})=2 \mathrm{n}, \mathrm{n} \geq 1$.

M. Theorem 2.6

If $\mathrm{G} \cong \mathrm{C}_{6} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\text {ctd }}(\mathrm{G})=\left\lfloor\frac{5 n}{2}\right\rfloor, \mathrm{n} \geq 2$.

1) Proof: Let $\mathrm{G} \cong \mathrm{C}_{6} \times \mathrm{P}_{\mathrm{n}}$ and $\mathrm{V}(\mathrm{G})=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{v}_{1 i}, \mathrm{v}_{2 \mathrm{i}}, \mathrm{v}_{3 i}, \mathrm{v}_{4 i}, \mathrm{v}_{5 \mathrm{i}}, \mathrm{v}_{6 \mathrm{i}}\right\}$ such that $<\left\{\mathrm{v}_{\mathrm{in}}, \mathrm{v}_{\mathrm{ii}}, \ldots, \mathrm{v}_{\mathrm{in}}\right\}>\cong \mathrm{P}_{\mathrm{n}}^{\mathrm{i}}, \quad \mathrm{i}=1,2,3,4,5,6$ and $<\left\{v_{1 j}, v_{2 j}, v_{3 j}, v_{4 j}, v_{5 j}, v_{6 j}\right\}>\cong C_{6}^{j}, j=1,2, \ldots, n$, where P_{n}^{i} is the $i^{\text {th }}$ copy of P_{n} and C_{6}^{j} is the $\mathrm{j}^{\text {th }}$ copy of C_{6} in $\mathrm{C}_{6} \times P_{n}$ and $|V(G)|$ $=6 \mathrm{n}$.
2) Case $1: \mathrm{n}$ is odd.
$\operatorname{LetD}{ }^{\prime}=\left[U_{i=1}^{\frac{n+1}{2}}\left\{v_{1,2 i-1}, v_{5,2 i-1}, v_{6,2 i-1}\right\}\right] \cup\left[U_{i=1}^{n}\left\{v_{2 i}\right\}\right]\left[U_{i=1}^{\frac{n-1}{2}}\left\{v_{3,2 i}, v_{4,2 i}\right\}\right]$.
Then $\left|\mathrm{D}^{\prime}\right|=3\left(\frac{\mathrm{n}+1}{2}\right)+\mathrm{n}+2\left(\frac{\mathrm{n}-1}{2}\right)=\frac{7 \mathrm{n}+1}{2}$ and $\mathrm{D}=\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}$. Then D is a dominating set of G . Also $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle=\left\langle\mathrm{D}^{\prime}\right\rangle$ is a tree obtained from the path $P_{n}=\left\langle\left\{v_{2, i}, i=1,2,3, \ldots, n\right\}>,(n \geq 2)\right.$ by attaching P_{4} at each of the vertices $v_{21}, v_{23}, v_{25}, \ldots, v_{2 n}$ and attaching P_{3} at each of the vertices $v_{22}, v_{24} \ldots, v_{2, n-1}$. Therefore D is a ctd-set of G.

$$
\gamma_{\mathrm{ctd}}(\mathrm{G}) \leq|\mathrm{D}|=\left|\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}\right|=6 \mathrm{n}-\left(\frac{7 \mathrm{n}+1}{2}\right)=\frac{5 \mathrm{n}-1}{2} .
$$

Hence $\gamma_{\text {ctd }}(\mathrm{G}) \leq \frac{5 \mathrm{n}-1}{2}$.
Let D' be a $\gamma_{\text {ctd }}$-set of G . The blocks $\mathrm{A}, \mathrm{B}, \mathrm{A}^{2}$ and $\mathrm{A}^{2} \mathrm{~B}$ are constructed as given below.

Figure 4
G is obtained by co atenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}} B$. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D^{\prime}.
Therefore D^{\prime} contains atleast 5 vertices from each block A of $\mathrm{A}^{\frac{\mathrm{n}-1}{2}}$ and atleast 2 vertices from block B . Therefore $\gamma_{\text {ctd }}(G)=\left|D^{\prime}\right| \geq 5$ $\left(\frac{\mathrm{n}-1}{2}\right)+2=\frac{5 \mathrm{n}-1}{2}$ and hence $\gamma_{\text {ctd }}(\mathrm{G})=\frac{5 \mathrm{n}-1}{2}=\left\lfloor\frac{5 \mathrm{n}}{2}\right\rfloor$.
Case 2: n is even.

Let $D^{\prime}=\left[U_{i=1}^{\frac{n}{2}}\left\{v_{1,2 i-1,}, v_{5,2 i-1}, v_{6,2 i-1}\right\}\right] \cup\left[U_{i=1}^{n}\left\{v_{2 i}\right\}\right]\left[U_{i=1}^{\frac{n}{2}}\left\{v_{3,2 i}, v_{4,2 i}\right\}\right]$.
Then $\left|\mathrm{D}^{\prime}\right|=3\left(\frac{\mathrm{n}}{2}\right)+\mathrm{n}+2\left(\frac{\mathrm{n}}{2}\right)=\frac{7 \mathrm{n}}{2}$ and $\mathrm{D}=\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}$. Then D is a dominating set of G . Also $\langle\mathrm{V}(\mathrm{G})-\mathrm{D}\rangle=\left\langle\mathrm{D}^{\prime}\right\rangle$ is a tree obtained from the path $P_{n}=<\left\{\mathrm{v}_{2, i}, i=1,2,3, \ldots, n\right\}>,(n \geq 2)$ by attaching P_{4} at each of the vertices $\mathrm{v}_{21}, \mathrm{v}_{23}, \mathrm{v}_{25}, \ldots, \mathrm{v}_{2, \mathrm{n}-1}$ and attaching P_{3} at each of the vertices $\mathrm{v}_{22}, \mathrm{v}_{24} \ldots, \mathrm{v}_{2 \mathrm{n}}$. Therefore D is a ctd-set of G .
$\gamma_{\text {ctd }}(\mathrm{G}) \leq|\mathrm{D}|=\left|\mathrm{V}(\mathrm{G})-\mathrm{D}^{\prime}\right|=6 \mathrm{n}-\left(\frac{7 \mathrm{n}}{2}\right)=\frac{5 \mathrm{n}}{2}$.
Hence $\gamma_{\text {ctd }}(\mathrm{G}) \leq \frac{5 \mathrm{n}}{2}$.
Let D^{\prime} be a $\gamma_{\text {ctd }}$-set of G . The block A is constructed as in Case 1 .
ThenG $\cong A^{\frac{n}{2}}$. The vertices with the symbol in each othe blocks represent the vertices that are to be included in D^{\prime}.
Therefore D' contains atleast 5 vertices from each block A of $A^{\frac{n}{2}}$.
Therefore $\gamma_{\text {ctd }}(\mathrm{G})=\left|\mathrm{D}^{\prime}\right| \geq 5\left(\frac{\mathrm{n}}{2}\right)=\frac{5 \mathrm{n}}{2}$ and hence $\gamma_{\text {ctd }}(\mathrm{G})=\frac{5 \mathrm{n}}{2}=\left\lfloor\frac{5 n}{2}\right\rfloor$.
Hence $\gamma_{\text {ctd }}(G)=\left\lfloor\frac{5 \mathrm{n}}{2}\right\rfloor, \mathrm{n} \geq 1$.

N. Remark 2.2.

In view of Theorem 2.4, Theorem 2.5, Theorem 2.6, and Theorem 2.7,

1) $\gamma_{\text {ctd }}\left(\mathrm{C}_{3} \times \mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}+1, \mathrm{n} \geq 2$.
2) $\gamma_{\text {ctd }}\left(\mathrm{C}_{4} \times \mathrm{C}_{\mathrm{n}}\right)=\left\lfloor\frac{3 \mathrm{n}+1}{2}\right\rfloor+1$
3) $\gamma_{c t d}\left(\mathrm{C}_{5} \times \mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{c}2 \mathrm{n}+1 \text {, if } \mathrm{n} \text { is even } \\ 2 \mathrm{n}, \text { if } \mathrm{n} \text { is odd. }\end{array}\right.$
4) $\gamma_{\text {ctd }}\left(\mathrm{C}_{6} \times \mathrm{C}_{\mathrm{n}}\right)=\left\lfloor\left.\frac{5 \mathrm{n}}{2} \right\rvert\,+1\right.$.
O. Remark 2.3.
5) \quad If $\mathrm{G}_{1} \cong \mathrm{~K}_{\mathrm{m}}$ and $\mathrm{G}_{2} \cong \mathrm{~K}_{\mathrm{n}}$, then $\gamma_{\text {ctd }}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)=\mathrm{m}+\mathrm{n}-2$.
6) If G_{1} and G_{2} are any two noncomplete connected graphs of order m and n respectively, with minimum degree atleast two, then $\gamma_{\text {ctd }}\left(G_{1}+G_{2}\right) \leq m+n-4$. Equality holds, if $G_{1} \cong K_{m}-e, G_{2} \cong K_{n}-e$.
7) For any two connected graphs G_{1} and G_{2} of order m and n respectively, $\gamma_{\mathrm{ctd}}\left(\mathrm{G}_{1}{ }^{\circ} \mathrm{G}_{2}\right) \leq \mathrm{m}+\mathrm{n}-4$. Equality holds, if $\mathrm{G}_{1} \cong$ P_{2} and $\mathrm{G}_{2} \cong \mathrm{C}_{3}$.

P. Distance Two Complementary tree domination number of Cartesian product of graphs

In the following, distance two complementary tree domination number of $K_{m} \times K_{n,} K_{m} \times P_{n,} K_{m} \times C_{n,} C_{3} \times P_{n,} C_{4} \times P_{n}, C_{5} \times P_{n}, C_{6} \times$ $P_{n}, C_{3} \times C_{n}, C_{4} \times C_{n}, C_{5} \times C_{n}$ and $C_{6} \times C_{n a r e}$ given

1) If $G \cong K_{m} \times K_{n}(m, n \geq 3$ and $m \leq n)$, then $\gamma_{d 2 c t d}(G)= \begin{cases}m(n-2)+ & \text {, if } m=n \\ m(n-2), & \text { if } m<n\end{cases}$
2) If $G \cong K_{m} \times P_{n}(4 \leq m \leq n)$, then $\gamma_{d 2 c t d}(G)=n(m-2)$.
3) $\gamma_{d 2 c t d}\left(K_{m} \times C_{n}\right)=n(m-2)+1$.
4) If $G \cong C_{3} \times P_{n}$, then $\gamma_{\text {d2ctd }}(G)=n, n \geq 1$.
5) If $\mathrm{G} \cong \mathrm{C}_{4} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\left\{\frac{3 \mathrm{n}+1}{2}\right\rfloor, \mathrm{n} \geq 1$.
6) If $\mathrm{G} \cong \mathrm{C}_{5} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=2 \mathrm{n}, \mathrm{n} \geq 3$.
7) If $\mathrm{G} \cong \mathrm{C}_{6} \times \mathrm{P}_{\mathrm{n}}$, then $\gamma_{\mathrm{d} 2 \mathrm{ctd}}(\mathrm{G})=\left\lfloor\frac{5 \mathrm{n}}{2}\right\rfloor, \mathrm{n} \geq 1$.
8) $\gamma_{d 2 c t d}\left(\mathrm{C}_{3} \times \mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}+1, \mathrm{n} \geq 2$.
9) $\gamma_{\text {d2ctd }}\left(\mathrm{C}_{4} \times \mathrm{C}_{\mathrm{n}}\right)=\left\lfloor\frac{3 n+1}{2}\right\rfloor+1$
10) $\gamma_{\mathrm{d} 2 \text { ctd }}\left(\mathrm{C}_{5} \times \mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{c}2 \mathrm{n}+1 \text {, if } \mathrm{n} \text { is even } \\ 2 \mathrm{n} \text {, if } \mathrm{n} \text { is odd. }\end{array}\right.$
11) $\gamma_{d 2 c t d}\left(\mathrm{C}_{6} \times \mathrm{C}_{\mathrm{n}}\right)=\left\{\left.\frac{5 \mathrm{n}}{2} \right\rvert\,+1, \mathrm{n} \geq 2\right.$.

REFERENCES

[1] M. El-Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991),223-227.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination ingraphs, Marcel Dekker Inc., New York, 1998.
[4] S. Muthammai and G. Ananthavalli, Distance Two Complementary Tree Domination Number of a graph, International Journal For Research in Applied Science and Engineering Technology. (submitted
[5] S. Muthammai and G. Ananthavalli, Complementary Tree Nil Domination Number of cartesian product of Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology.(submitted
[6] S. Muthammai, P. Vidhya, Complementary tree domination in grid graphs,International Journalof Engineering Science, Advanced Computing and BioTechnology, 2(3) (2011), 118-129
[7] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publication, 38, 1962.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

