

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: XII Month of publication: December 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Complementary Tree Domination number and Distance two Complementary Tree Domination number of Cartesian Product of Graphs

S. Muthammai¹, G. Ananthavalli²

¹Government Arts and Science College, Kadaladi,Ramanathapuram-623703, India. ² Government Arts College for Women (Autonomous),Pudukkottai-622001, India.

Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V(G) - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraph $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$. A dominating set D is called a distance two complementary tree dominating set, if for each $u \in V(G) - D$, there exists a vertex $v \in D$ such that $d(u,v) \leq 2$ and also $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a distance two complementary tree domination number of G and is denoted by $\gamma_{d2ctd}(G)$. In this paper, complementary tree domination number of G and is denoted by $\gamma_{d2ctd}(G)$. In this paper, complementary tree domination number, complementary tree domination number, distance two complementary tree domination number of Cartesian product of some standard graphs are found. Key words: Domination number, complementary tree domination number, distance two complementary tree domination number, cartesian product.

I. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A graph G with p vertices and q edges is denoted by G(p, q). The concept of domination in graphs was introduced by Ore[5]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G) –D is adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by γ (G). Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraph $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$.

The cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$ with $V (G_1 \times G_2) = V (G_1) \times V (G_2)$ (where x denotes the cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V (G_1 \times G_2)$ are adjacent in $G_1 \times G_2$ whenever $[u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)]$ or $[u_2 = v_2$ and $(u_1, v_1) \in E(G_1)]$.

The concept of distance two complementary tree dominating set is introduced in [4]. A dominating set D is called a distance two complementary tree dominating set, if for each $u \in V(G) - D$, there exists a vertex $v \in D$ such that $d(u,v) \le 2$, and also $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d2ctd}(G)$.

In this paper, complementary tree domination number and distance two complementary tree domination number of $K_m \times K_n$, $K_m \times P_n$, $K_m \times C_n$, $C_3 \times P_n$, $C_4 \times P_n$, $C_5 \times P_n$, $C_6 \times P_n$, $C_3 \times C_n$, $C_4 \times C_n$, $C_5 \times C_n$ and $C_6 \times C_{nare found}$. Any undefined terms in this paper may be found in Harary[2].

II. COMPLEMENTARY TREE DOMINATION NUMBER OF CARTESIAN PRODUCT OF GRAPHS

A. Theorem 2.1

If $G \cong K_m \ge K_n$, $n \ge 3$ and $m \le n$), then $\gamma_{ctd}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2), & \text{ if } m < n \end{cases}$

B. Proof.

Let $G \cong K_m \times K_n$.

Let $V(G) = \bigcup_{i=1}^{m} \{v_{i1}, v_{i2}, ..., v_{in}\}$ such that $\langle \{v_{i1}, v_{i2}, ..., v_{in}\} \rangle \cong K_n^i$, i = 1, 2, ..., m and $\langle \{v_{1j}, v_{2j}, ..., v_{mj}\} \rangle \cong K_m^j$, j = 1, 2, ..., n, where K_n^i is the *i*th copy of K_n and K_m^j is the *j*th copy of K_m in $K_m \times K_n$. |V(G)| = mn.

C. Case 1: m = n.

et $D' = (\bigcup_{i=1}^{m-1} \{v_{ii}, v_{i,i+1}\}) \cup \{v_{m,m}\}$ and D = V(G) - D'. Then V(G) - D = D' and |D'| = 2(m-1) + 1 = 2m - 1. For i = 1, 2, 3, ..., m-1, the vertices $v_{ii}, v_{i,i+1}$ in V(G) - D are adjacent to v_{i1} in D, and the vertex v_{mm} is adjacent to v_{m1} in D. Therefore D is a dominating set of G. $\langle V(G) - D \rangle \cong P_{2(m-1)+1} = P_{2m-1}$. Since D is a ctd-set of G. Hence $\gamma_{ctd}(G) \le |D| = |V(G)| - |D'| = mn - (2m - 1) = m(n - 2) + 1$.

It is to be noted that, any tree in G is a path. Let D' be a γ_{ctd} -set of G. The longest path that can be obtained from the subgraph of G induced by the vertices of V(G)–D' is P_{2m-1} . That is, $\langle V(G)-D' \rangle \cong P_{2m-1}$. D' contains at least mn – (2m - 1) = m(n - 2) + 1 vertices. Therefore $\gamma_{ctd}(G) = |D'| \ge m(n - 2) + 1$.

Hence $\gamma_{ctd}(G) = m(n-2) + 1$.

D. Case 2: m < n.

Let $D' = \bigcup_{i=1}^{m} \{ V_{ii}, V_{i,i+1} \}$ and D = V(G) - D'. Then V(G) - D = D' and |D'| = 2m. The vertices V_{11}, V_{12} are adjacent to V_{1n} and $V_{ii}, V_{i,i+1}$ (i = 2, 3, ..., m) are adjacent to v_{i1} , (i = 2, 3, ..., m) in D. Therefore D is a dominating set of G. Since $\langle V(G) - D \rangle \cong P_{2m}$, D is a ctd-set of G. Therefore $\gamma_{ctd}(G) \le |V(G)| - |D'| = mn - 2m = m(n - 2)$.

As in case 1, any tree in G is a path. Let D' be γ_{ctd} -set of G. The longest path that can be obtained from the subgraph of G induced by the vertices of V(G) - D' is P_{2m} .

That is<V (G) $-D' \ge P_{2m}$. Therefore D' contains at least mn - 2m = m(n - 2) vertices. Therefore $\gamma_{ctd}(G) = |D'| \ge m(n - 2)$. Therefore $\gamma_{ctd}(G) = m(n - 2)$.

Hence $\gamma_{ctd}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2), & \text{ if } m < n \end{cases}$

E. Remark 2.1

The set D defined in Case 1 and Case 2 is also a d2ctd-set of G. Since any vertex u in D which is at distance two from a vertex of D, $\langle (V (G) - D) \cup \{u\} \rangle$ either disconnected or contains cycle.

F. Example 2.1

For the graph G given in Figure 1.a and Figure 1.b, the set of vertices marked with is a minimum ctd-set of $\mathfrak{K}_m \times K_n$ and $\gamma_{ctd}(K_4 \times K_4) = 9$ and $\gamma_{ctd}(K_4 \times K_5) = 12$.

 $\begin{array}{ll} G. & \textit{Theorem 2.2.} \\ \text{If } G \cong K_m \ x \ P_n(4 \leq m \leq n), \ \text{then } \gamma_{\text{ctd}}(G) = n \ (m-2). \\ 1) & \textit{Proof.} \\ \text{Let } G \cong K_m \ x \ P_n, m, n \geq 4. \end{array}$

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com

 $\text{Let } V(G) = \bigcup_{i=1}^{m} \{v_{i1}, v_{i2}, \dots, v_{in}\} \text{ such that } < \{v_{i1}, v_{i2}, \dots, v_{in}\} > \cong K_n^i, i = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \cong P_m^j, j = 1, 2, \dots, m \text{ and } < \{v_{1j}, v_{2j}, \dots, v_{mj}\} > \mathbb{E} \left\{v_{1j}, v_{2j}, \dots, v_{mj}\right\} > \mathbb{E} \left\{v_{1j}, v$ n, where K_n^i is the ith copy of K_n and P_m^j is the jth copy of P_m in $K_m x P_n$.

Let D' =
$$\begin{cases} \{v_{1n} \} \cup [U_{i=1}^{n} \{v_{2i} \}] \cup [U_{i=1}^{\frac{n-1}{2}} \{v_{1,2i-1}, v_{3,2i} \}], \text{ if n is odd} \\ [U_{i=1}^{n} \{v_{2,i} \}] \cup [U_{i=1}^{\frac{n}{2}} \{v_{1,2i-1}, v_{3,2i} \}], \text{ if n is even} \end{cases}$$

Then |D'| = 2n. If D = V(G) - D', then D is a dominating set of G. Also $\langle V(G) - D \rangle = \langle D' \rangle \cong P_n^{\circ}K_1$. Therefore D is a ctd-set of G and $\gamma_{ctd}(G) \leq |D| = mn - 2n = n(m - 2)$.

Hence
$$\gamma_{ctd}(G) \leq n(m-2)$$
.

Let D' be a γ_{ctd} -set of G. Since D' is a ctd-set of G, D' contains at least (m - 2) vertices in each of n copies of K_m . Hence D' contains atleast n(m – 2) vertices. Therefore $\gamma_{ctd}(G) = |D'| \ge n(m - 2)$. Hence $\gamma_{ctd}(G) = n (m - 2)$.

H. Example 2.2.

For the graph G given in Figure 2, the set of vertices marked with is a minimum ctd-set of $K_m \times \bigotimes_{n} \text{and } \gamma_{ctd}(K_4 \times K_9) = 18$.

Theorem 2.3. Ι.

$$G \cong C_3 \mathrel{x} P_n,$$
 then $\gamma_{ctd}(G) = n$, $n \geq 1.$

if n is odd

Let
$$G \cong C_3 \times P_n$$
.

Let $V(G) = \bigcup_{i=1}^{n} \{v_{1i}, v_{2i}, v_{3i}\}$ such that $\langle \{v_{i1}, v_{i2}, ..., v_{in}\} \rangle \cong P_n^i, i = 1, 2, 3$ and $\langle \{v_{1j}, v_{2j}, v_{3j}\} \rangle \cong C_3^j, j = 1, 2, ..., n$, where P_n^i is the $i^{th} \, \text{copy of} \, P_n \, \text{and} \, C_3^j \text{ is the } j^{th} \, \text{copy of} \, C_3 \, \text{in} \, C_3 \, x \, P_n \!.$

$$\operatorname{Let} D = \begin{cases} \{v_{1n}\} \cup [\bigcup_{i=1}^{\frac{n-1}{2}} \{v_{1,2i-1}, v_{3,2i}\}], \text{ if n is odd} \\ \bigcup_{i=1}^{\frac{n}{2}} \{v_{1,2i-1}, v_{3,2i}\}, \text{ if n is even} \end{cases}$$

$$\operatorname{Then} D \text{ is a dominating set of } G. \text{ Also } < V (G) - D > \cong P_n \circ K_1. \text{ Therefore } D \text{ is a ctd-set of } G \text{ and } |D| = \\ \begin{cases} 2\left(\frac{n-1}{2}\right) + 1 = n, \text{ if n is even} \\ 2\left(\frac{n}{2}\right) = n, \text{ if n is odd} \end{cases} \text{ and } \gamma_{ctd}(G) \leq |D| = n. \end{cases}$$

Let D be a γ_{ctd} -set of G. Then D' contains at least one vertex from each cycle. Since C₃ x P_n contains n copies of C₃, D' contains at least n vertices. $\gamma_{ctd}(G) = |D'| \ge n$. Hence $\gamma_{ctd}(G) = n, n \ge 1$.

J. Theorem 2.4.

If $G \cong C_4 \ge P_n$, then $\gamma_{ctd}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor$, $n \ge 1$. $\text{Let } G \cong C_4 \ x \ P_n \ \text{and} \ V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \ \text{such that} < \{v_{i1}, v_{i2}, \dots, v_{in}\} \\ > \cong P_n^i, \ i = 1, 2, 3, 4 \ \text{and} < \{v_{1j}, v_{2j}, v_{3j}, v_{4j}\} \\ > \cong C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ > = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ > = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \\ = C_4^j, \quad V_{1i} = 1, 2, 3, 4 \ \text{and} < \{v_{1i}, v_{2i},$ j=1,2, ..., n, where P_n^i is the i^{th} copy of P_n and C_4^j is the j^{th} copy of C_4 in $C_4 \ge P_n$ and |V(G)| = 4n.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let $D' = \{ v_{31} \} \cup [\bigcup_{i=1}^{\frac{n-1}{2}} \{ v_{1,2i}, v_{4,2i}, v_{3,2i+1} \}] \cup [\bigcup_{i=1}^{n} \{ v_{2i} \}].$

Then $|D'| = 1 + 3\left(\frac{n-1}{2}\right) + n = \frac{5n-1}{2}$ and D = V(G) - D'. Then D is a dominating set of G. Also $\langle V(G) - D \rangle = \langle D' \rangle$ is a tree obtained from the path $P_n = \langle \{v_{2,i}.i = 1,2,3,...,n\} \rangle$, $(n \ge 2)$ by attaching P_3 at each of the vertices $v_{22}, v_{24}, v_{26}, ..., v_{2,n-1}$ and attaching a pendant edge at each of the vertices $v_{21}, v_{23}, ..., v_{2,n}$. Therefore D is a ctd-set of G, and

$$\gamma_{\text{ctd}}(G) \leq |\mathbf{D}| = |\mathbf{V}(G) - \mathbf{D}'| = 4\mathbf{n} - \left(\frac{5\mathbf{n}-1}{2}\right) =$$

Hence $\gamma_{\text{ctd}}(G) \leq \frac{3\mathbf{n}+1}{2} = \left|\frac{3\mathbf{n}+1}{2}\right|.$

Let D['] be a γ_{ctd} -set of G. The blocks A, B, A² and A²B are constructed as given below.

G is obtained by concatenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}}$ B. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'

Therefore D' contains at least 3 vertices from each block A of $A^{\frac{n-1}{2}}$ and at least 2 vertices from block B.

Therefore
$$\gamma_{ctd}(G) = |D'| \ge 2 + 3\left(\frac{n-1}{2}\right) = \frac{3n+1}{2} = \left\lfloor \frac{3n+1}{2} \right\rfloor.$$

Hence $\gamma_{ctd}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor, n \ge 1.$

 $|v_{3,2i-1}| \cup [\bigcup_{i=1}^{n} \{v_{2i}\}] \text{ and } D = V(G) - D'. \text{ Then } |D'| = 3\left(\frac{n}{2}\right) + n = \frac{5n}{2}. \text{ Then } D \text{ is a dominating set of } G. \text{ Also } < V(G) - D > = < D' > \text{ is a tree obtained from the path } P_n = < \{v_{2i}, i = 1, 2, 3, ..., n\} >, (n \ge 2) \text{ by attaching } P_3 \text{ at each of the vertices } v_{22}, v_{24}, v_{26}, ..., \text{ and } v_{2,n} \text{ and attaching a pendant edge at each of the vertices } v_{21}, v_{23} \dots, \text{ and } v_{2,n-1}. \text{ Therefore } D \text{ is a ctd-set of } G \text{ and } \gamma_{ctd}(G) \le |D| = |V(G) - D'| = 4n - \left(\frac{5n}{2}\right) = \frac{3n}{2}.$

Hence $\gamma_{\text{ctd}}(G) \leq \frac{3n}{2} = \left\lfloor \frac{3n+1}{2} \right\rfloor$.

Let D' be a γ_{ctd} -set of G. The block A is constructed as in Case 1.

Then $G \cong A^{\frac{n}{2}}$. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'. Therefore D' contains at least 3 vertices from each block A of $A^{\frac{n}{2}}$. Therefore $\gamma_{ctd}(G) = |D'| \ge 3\left(\frac{n}{2}\right) = \frac{3n}{2} = \left\lfloor \frac{3n+1}{2} \right\rfloor$. Hence $\gamma_{ctd}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor$, $n \ge 1$.

L. Proof

Let $G \cong C_5 \ge P_n$ and $V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}, v_{5i}\}$ such that $\langle v_{i1}, v_{i2}, ..., v_{in} \} \ge P_n^i$, i = 1, 2, 3, 4, 5 and $\langle v_{1j}, v_{2j}, v_{3j}, v_{4j}, v_{5j} \} \ge C_5^i$, j = 1, 2, ..., n, where P_n^i is the *i*th copy of P_n and C_5^i is the *j*th copy of C_5 in $C_5 \ge P_n^i$. |V(G)| = 5n.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let D =
$$\begin{cases} [\bigcup_{i=1}^{\frac{n+1}{2}} \{v_{1,2i-1}, v_{5,2i-1}\}] \cup [\bigcup_{i=2}^{\frac{n-1}{2}} \{v_{3,2i}, v_{4,2i}, \}], \text{ if n is odd} \\ \bigcup_{i=2}^{\frac{n}{2}} \{v_{1,2i-1}, v_{3,2i}, v_{4,2i}, v_{5,2i-1}\}, \text{ if n is even.} \end{cases}$$

Then D is a dominating set of G and also $\langle V(G) - D \rangle$ is a tree obtained from the path $P_n = \langle \{v_{2,i}, i = 1, 2, 3, ..., n\} \rangle$, $(n \ge 2)$ by attaching P_3 at each of the vertices $v_{21}, v_{22}, v_{23}, ...,$ and $v_{2,n}$ Therefore D is a ctd-set of G.

and
$$|\mathbf{D}| = \begin{cases} 2\left(\frac{n+1}{2}\right) + 2\left(\frac{n-1}{2}\right) = 2n, & \text{if n is even} \\ 4\left(\frac{n}{2}\right) = 2n, & \text{if n is odd.} \end{cases}$$

Therefore $\gamma_{ctd}(G) \leq |D'| = 2n$.

Let D' be a γ_{ctd} -set of G. Since $\gamma(C_5) = 2$, D' contains at least 2 vertices from each of n cycles and hence D'contains at least 2n vertices. Therefore $\gamma_{ctd}(G) = |D'| \ge 2n$. Hence $\gamma_{ctd}(G) = 2n$, $n \ge 1$.

M. Theorem 2.6

If $G \cong C_6 \ge P_n$, then $\gamma_{ctd}(G) = \left\lfloor \frac{5n}{2} \right\rfloor$, $n \ge 2$.

1) Proof.: Let $G \cong C_6 \ge P_n$ and $V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}, v_{5i}, v_{6i}\}$ such that $\langle v_{i1}, v_{i2}, ..., v_{in} \rangle \cong P_n^i$, i = 1, 2, 3, 4, 5, 6 and $\langle v_{1j}, v_{2j}, v_{3j}, v_{4j}, v_{5j}, v_{6j} \rangle \cong C_6^j$, j = 1, 2, ..., n, where P_n^i is the ith copy of P_n and C_6^j is the jth copy of C_6 in $C_6 \ge P_n$ and |V(G)| = 6n.

2) Case 1: n is odd.

 $\begin{array}{l} Let D^{'} = [\bigcup_{i=1}^{\frac{n+1}{2}} \{v_{1,2i-1}, v_{5,2i-1}, v_{6,2i-1}\}] \cup [\bigcup_{i=1}^{n} \{v_{2i}\}] [\bigcup_{i=1}^{\frac{n-1}{2}} \{v_{3,2i}, v_{4,2i}\}]. \\ Then \ |D^{'}| = 3 \left(\frac{n+1}{2}\right) + n \ + 2 \left(\frac{n-1}{2}\right) = \frac{7n+1}{2} \ \text{and} \ D = V(G) \ -D^{'}. \ \text{Then } D \ \text{is a dominating set of } G. \ Also \ <V(G) \ -D \ > = \ <D^{'} \ > \ \text{is a tree} \ obtained from the path \ P_n = \ < \left\{v_{2,i}, \ i = 1, 2, 3, \dots, n\right\} \ >, \ (n \ge 2) \ \text{by attaching } P_4 \ \text{at each of the vertices } v_{21}, v_{23}, v_{25}, \dots, v_{2n} \ \text{and attaching} \ P_3 \ \text{at each of the vertices } v_{22}, v_{24} \ \dots, v_{2,n-1}. \ \text{Therefore } D \ \text{is a ctd-set of } G. \end{array}$

$$\gamma_{ctd}(G) \leq |D| = |V(G) - D'| = 6n - \left(\frac{7n+1}{2}\right) = \frac{5n-1}{2}$$

Hence $\gamma_{ctd}(G) \leq \frac{5n-1}{2}$.

Let D['] be a γ_{ctd} -set of G. The blocks A,B, A² and A²B are constructed as given below.

G is obtained by corrected attenting the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}}$ B. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'.

Therefore D' contains at least 5 vertices from each block A of $A^{\frac{n-1}{2}}$ and at least 2 vertices from block B. Therefore $\gamma_{ctd}(G) = |D'| \ge 5$ $\left(\frac{n-1}{2}\right) + 2 = \frac{5n-1}{2}$ and hence $\gamma_{ctd}(G) = \frac{5n-1}{2} = \left\lfloor \frac{5n}{2} \right\rfloor$. Case 2: n is even.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let $D' = [\bigcup_{i=1}^{\frac{n}{2}} \{v_{1,2i-1}, v_{5,2i-1}, v_{6,2i-1}\}] \cup [\bigcup_{i=1}^{n} \{v_{2i}, \}] [\bigcup_{i=1}^{\frac{n}{2}} \{v_{3,2i}, v_{4,2i}\}].$

Then $|D'| = 3\left(\frac{n}{2}\right) + n + 2\left(\frac{n}{2}\right) = \frac{7n}{2}$ and D = V(G) - D'. Then D is a dominating set of G. Also $\langle V(G) - D \rangle = \langle D' \rangle$ is a tree obtained from the path $P_n = \langle \{v_{2,i}, i = 1, 2, 3, ..., n\} \rangle$, $(n \ge 2)$ by attaching P_4 at each of the vertices $v_{21}, v_{23}, v_{25}, ..., v_{2,n-1}$ and attaching P_3 at each of the vertices $v_{22}, v_{24}, ..., v_{2n}$. Therefore D is a ctd-set of G.

$$\begin{split} \gamma_{ctd}(G) &\leq |D| = |V(G) - D'| = 6n - \left(\frac{7n}{2}\right) = \frac{5n}{2}.\\ \text{Hence } \gamma_{ctd}(G) &\leq \frac{5n}{2}.\\ \text{Let } D' \text{ be a } \gamma_{ctd} \text{-set of } G. \text{ The block } A \text{ is constructed as in Case 1.}\\ \text{Then} G &\cong A^{\frac{n}{2}}. \text{ The vertices with the symbol} \text{ in each } \textcircled{O} \text{ the blocks represent the vertices that are to be included in } D'.\\ \text{Therefore } D' \text{ contains at least 5 vertices from each block } A \text{ of } A^{\frac{n}{2}}.\\ \text{Therefore } \gamma_{ctd}(G) &= |D'| \geq 5 \left(\frac{n}{2}\right) = \frac{5n}{2} \text{ and hence} \gamma_{ctd}(G) = \frac{5n}{2} = \left\lfloor\frac{5n}{2}\right\rfloor.\\ \text{Hence } \gamma_{ctd}(G) &= \left\lfloor\frac{5n}{2}\right\rfloor, n \geq 1. \end{split}$$

N. Remark 2.2.

In view of Theorem 2.4, Theorem 2.5, Theorem 2.6, and Theorem 2.7,

- $1) \quad \gamma_{ctd}(C_3 x C_n) = n+1, n \geq 2.$
- 2) $\gamma_{\text{ctd}}(C_4 \times C_n) = \left|\frac{3n+1}{2}\right| + 1$

3)
$$\gamma_{-1}(C_5 \times C_n) = \begin{cases} 2n+1, & \text{if n is even} \\ 2n+1, & \text{if n is even} \end{cases}$$

- 3) $\gamma_{\text{ctd}}(C_5 \times C_n) = \begin{cases} 2n, \text{ if } n \text{ is odd.} \end{cases}$
- 4) $\gamma_{ctd}(C_6 \times C_n) = \left\lfloor \frac{5n}{2} \right\rfloor + 1.$

O. Remark 2.3.

- 1) If $G_1 \cong K_m$ and $G_2 \cong K_n$, then $\gamma_{ctd}(G_1 + G_2) = m + n-2$.
- 2) If G_1 and G_2 are any two noncomplete connected graphs of order m and n respectively, with minimum degree atleast two, then $\gamma_{ctd}(G_1 + G_2) \le m + n 4$. Equality holds, if $G_1 \cong K_m e$, $G_2 \cong K_n e$.
- 3) For any two connected graphs G_1 and G_2 of order m and n respectively, $\gamma_{ctd}(G_1 \circ G_2) \le m + n 4$. Equality holds, if $G_1 \cong P_2$ and $G_2 \cong C_3$.

P. Distance Two Complementary tree domination number of Cartesian product of graphs

In the following, distance two complementary tree domination number of $K_m \times K_n$, $K_m \times P_n$, $K_m \times C_n$, $C_3 \times P_n$, $C_4 \times P_n$, $C_5 \times P_n$, $C_6 \times P_n$, $C_3 \times C_n$, $C_4 \times C_n$, $C_5 \times C_n$ and $C_6 \times C_n$ are given

- 1) If $G \cong K_m \ge K_n$ (m, $n \ge 3$ and $m \le n$), then $\gamma_{d2ctd}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2), & \text{ if } m < n \end{cases}$
- 2) If $G \cong K_m \times P_n$ ($4 \le m \le n$), then $\gamma_{d_{2}ctd}(G) = n (m 2)$.

3)
$$\gamma_{d2ctd}(K_m x C_n) = n(m-2) + 1.$$

- 4) If $G \cong C_3 \ge P_n$, then $\gamma_{d_{2ctd}}(G) = n, n \ge 1$.
- 5) If G \cong C₄ x P_n, then $\gamma_{d2ctd}(G) = \left|\frac{3n+1}{2}\right|, n \ge 1$.
- $6) \quad \text{ If } G\cong C_5 \ x \ P_n, \ \text{then} \ \gamma_{d2ctd}(G)=2n, \ n\geq 3.$
- 7) If G \cong C₆ x P_n, then $\gamma_{d2ctd}(G) = \left|\frac{5n}{2}\right|, n \ge 1$.
- $8) \quad \gamma_{d2ctd}(C_3 \mathrel{x} C_n) = n+1, \, n \geq 2.$

9)
$$\gamma_{d2ctd}(C_4 \times C_n) = \left|\frac{3n+1}{2}\right| + 1$$

10)
$$\gamma_{d2ctd}(C_5 \times C_n) = \begin{cases} 2n + 1, & \text{if n is even} \\ 2n, & \text{if n is odd.} \end{cases}$$

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

11) $\gamma_{d2ctd}(C_6 \times C_n) = \left|\frac{5n}{2}\right| + 1, n \ge 2.$

REFERENCES

- [1] M. El-Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991),223-227.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination ingraphs, Marcel Dekker Inc., New York, 1998.
- [4] S. Muthammai and G. Ananthavalli, Distance Two Complementary Tree Domination Number of a graph, International Journal For Research in Applied Science and Engineering Technology. (submitted
- [5] S. Muthammai and G. Ananthavalli, Complementary Tree Nil Domination Number of cartesian product of Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology.(submitted
- [6] S. Muthammai, P. Vidhya, Complementary tree domination in grid graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 2(3) (2011), 118–129
- [7] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publication, 38, 1962.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)