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ABSTRACT: The purpose of this paper is to study various properties of the F- sturcture satisfying F K + (—l)k F =0.Where

k is positive integer k > 3 the metric F- structure, kernel and tangent vectors have also been discussed.
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l. INTRODUCTION
LetV, be a C™ differentiable manifold and F 0 bea C™ (1 1) tensor on Vo such that
A FX+(-)*F =0
we define the the projection operators | and m on V, by
. | = (_1)k—1 F2k71’ m=| — (_1)k—1 =

Where | denotes the identify operator
From (1.1) and (1.2), we have

c. l+m=l, =1, m*=m, Im=ml=0
IF=FI=F, Fm=mF =0,
1)Theorem (1.1): If rank((F))=n then

a4 I=1,m=0
Proof: from the fact

rank ((F)) + nulity((F)) =dimV, =n
We have
nulity((F))=0= ker((F))={0}
or
FX=0 =X =0
Then Fxl = FX2
F(X,-X,)=0
Xl = Xz orFis1-1
Also F being an operator on a finite dimensional V,, F is onto also. thusF invertible. F_l exists. Now operating F_l on
FI =F and mF =0, we get (1.4)
2)  Theorem (1.2) letus define the (1,1) tensors P, 0, &, B by
ws) p=m+F g=m-F“", a=1+F g=1-F**
then
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@6 p°=q°=1,pq=M -l,af =0
Proof: using (1.1), (1.2), (1.5) we have

p?=(m+F*)(m+F“Y)
=m’ + mF**t + B A
=m+0+0+F*7?
=m+I?
= |
af =(+ Fk_l)(| + Fk_l)
|2 _|EML 4 ER2 _ 2K
=l-F“"+F“'-1°
3) Theorem (1.3) Let K = 2r , m and F satisfying (1.7)
m?=m, Fm=mF =0,
(m+FY(m-F r_1) =1, then we get (1.1)
Proof: we have (m +F r)(m - Fr_l) = |
m?—mF™ +F'm-F* " =1
m-0+0-F* "=
mF-F* =F

F?" +F =0 whichis (1.1)
4)  Theorem (1.4) Let
K =2r +1, mand F satisfying (1.8)

m’=m, Fm=mF =0,
(m+ F“)(m— Fr) =1, thenwe get (1.1)

Proof: we have (m + Fr)(m - F) = |
m?>—mF"+F'm-F* =|
m-0+0-F* =1
mF - F2* = _F

F?™™ —F =0 whichis (1.1)

1. METRIC F-STRUCTURE
If we define

A. F (X ,Y ) =0 (FX ,Y ) is skew- symmetric.
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g (FX Y ) =—g (X , FY), {F, g}is called Metric F Structure

B.

1) Theorem (2.1): letus K be the odd, then

c. g ( F(k-Di2y F (k-1)/2y ) _ (_1)(k—1)/2 [g ( XY ) _ ‘m( XY )] where

. M(X,Y)=g(mX,Y)=g(X,mY).
Proof: we have on using (2.2),(1.2),(2.4) (1.3)

g(FH 22X, ROy ) = ()« D2 g (X, F YY)
= (-1 P2g(X,1Y)
= () (g,(1-m)Y)
= (D g(X.Y)=g(X,mY)]

= (D" [g(X.Y)-m(X,Y)]
1) Theorem (2.2): {F, g} isnot unique
Proof: letletus K be the odd, and u be non zero (1,1) tensor , such that

uF'=Fu, '9(X,Y)=g(uX,Y) then
UF  =Fu=Fu=puF' tus
oo F*-F=0
Also /g(Fr(k—l)/Zx ’ Fr(k—l)/ZY) _ g(,uF'(k_l)/zX "uFr(k—l)/ZY)
_ g(F(k—l)/zux ’ F(k—l)/qu)
= (-D)“ " g(uX,FuY)
= (=D“ P g(uX, 1Y)
= (D" P2g(uX, (1 —m)uY)
(D2 [g(uX, 1Y) - g(uX, muY)]
= (D" g(X,Y)='m(X,Y) ]
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I11. LERNAL AND TANGENT VECTOR:
A kerF :{X ‘FX :0}

B. TanF ={X:FX IIX}
1) Theorem (2.3) For the F-structure satisfying (1.1), we have

C. kerFIkerF2: ————— :kerF2k
D. TanF=TanF?=————— — TanE

Proof: Follows easily
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