
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Adjacent Vertex Sum Polynomial of Path Related Graphs

A. M. Anto ${ }^{1}$
${ }^{1}$ Assistant Professor in Mathematics, MalanKara Catholic College, Kaliyakavilai, Tamil Nadu, India.

Abstract

Let $G=(V, E)$ be a graph. The adjacent vertex sum polynomial of G is defined as $S(G, x)=\sum_{i=o}^{\Delta(G)} n_{\Delta(G)-i} x^{\alpha_{\Delta(G)-i}}$, where $n_{\Delta(G)-i}$ is the sum of the number of adjacent vertices of all the vertices of degree $\Delta(G)$ - iand $\alpha_{\Delta(G)-i}$ is the sum of the degree of adjacent vertices of all the vertices of degree $\Delta(G)$ - i. In this paper I seek to find the Adjacent Vertex Sum Polynomial of some path related Graphs.

Keywords: Adjacent Vertex Sum Polynomial, Splitting graph, Degree splitting graph, Path.

I. INTRODUCTION

Here I consider simple undirected graphs. The terms not defined here we can refer Frank Harary [3]. The vertex set is denoted by V and the edge set by E . For $\mathrm{v} \in \mathrm{V}, \mathrm{d}(\mathrm{v})$ is the number of edges incident with v , the maximum degree of the graph G is defined as $\Delta(G)=\max \{d(v) / v \epsilon V\}$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, the union $G_{1} \cup G_{2}$ is defined to be $G=(V, E)$ where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$, the sum $G_{1}+G_{2}$ is defined as $G_{1} \cup G_{2}$ together with all the lines joining points of V_{1} to V_{2}. The Cartesian product of two graphs G_{1} and G_{2} denoted by $G=G_{1} \times G_{2}$ is the graph G such that $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, that is every vertex of $G_{1} \times G_{2}$ is an ordered pair (u, v), where $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ and two distinct vertices (u, v) and (x, y) are adjacent in $G_{1} \times G_{2}$ if either $u=x$ and $v y \in E\left(G_{2}\right)$ or $v=y$ and $u x \in E\left(G_{1}\right)$. The graph G with $V=S_{1} \cup S_{2} \cup \ldots \cup S_{i} \cup T$, where each S_{i} is a set of vertices having at least two vertices and having the same degree and $T=\mathrm{V} \cup \mathrm{S}_{\mathrm{i}}$. The degree splitting graph of Gdenoted by $\mathrm{DS}(\mathrm{G})$ and is obtained from G by adding the vertices $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{t}}$ and joining w_{i} to each vertex of $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{t}$ [5]. For each vertex v of a graph G, take a new vertex v^{\prime}, join v^{\prime} to all the vertices of G which are adjacent to v. The graph $s(G)$ thus obtained is called splitting graph of $G[1]$. The Path consisting of length n is denoted by P_{n}. The graph $G=(V, E)$ is simply denoted by G. Number of vertices in G is called order of G.

II. MAIN RESULTS

A. Theorem 2.1

Let P_{m} and P_{n} be paths with order m and n respectively. Then $S\left(P_{m} \cup P_{n}, x\right)=[2(m+n)-8] x^{4(m+n)-20}+4 x^{8}$.

1) Proof: Let P_{m} and P_{n} be paths with order m and n respectively. In $\mathrm{P}_{\mathrm{m}}, m-2$ vertices have degree 2 and 2 vertices have degree 1. In $P_{n}, n-2$ vertices have degree 2 and 2 vertices have degree 1 . Therefore in this graph $P_{m} \cup P_{n}, m-2$ vertices have degree $2 ; n-2$ vertices have degree 2 and 4 vertices have degree 1 . Hence, sum of the number of adjacent vertices of all the vertices of degree 2 is $2(m+n)-8$, sum of the degree of adjacent vertices of all the vertices of degree 2 is $4(m+n)-$ 20 , sum of the number of adjacent vertices of all the vertices of degree 1 is 4 , sum of the degree of adjacent vertices of all the vertices of degree 1 is8. This gives, $S\left(P_{m} \cup P_{n}, x\right)=[2(m+n)-8] x^{4(m+n)-20}+4 x^{8}$.
B. Example 2.2

Consider the graph $\mathrm{P}_{3} \cup \mathrm{P}_{4}$, then $\mathrm{S}\left(\mathrm{P}_{3} \cup \mathrm{P}_{4}, \mathrm{x}\right)=10 \mathrm{x}^{8}$.
$\mathrm{P}_{3} \cup \mathrm{P}_{4}:$

Figure: 2.1

Here, $S\left(P_{3} \cup P_{4}, x\right)=[2(3+4)-8] x^{4(3+4)-20}+4 x^{8}$.

$$
\begin{aligned}
& =6 x^{8}+4 x^{8} . \\
& =10 x^{8}
\end{aligned}
$$

C. Theorem 2.3

Let P_{m} and P_{n} be paths with order m and n respectively. Then $S\left(P_{m}+P_{n}, x\right)$

$$
=(\mathrm{m}-2)(\mathrm{n}+2) \mathrm{x}^{(\mathrm{m}-4)[2(\mathrm{n}+2)+(\mathrm{n}-2)(\mathrm{m}+2)+2(\mathrm{~m}+1)]+2[(2 \mathrm{n}+3)+(\mathrm{n}-2)(\mathrm{m}+2)+2(\mathrm{~m}+1)]}
$$

$$
\begin{aligned}
& +2(n+1) \mathrm{x}^{2[(n+2)+(n-2)(m+2)+2(m+1)]} \\
& +(\mathrm{n}-2)(\mathrm{m}+2) \mathrm{x}^{(\mathrm{n}-4)[2(\mathrm{~m}+2)+(\mathrm{m}-2)(\mathrm{n}+2)+2(\mathrm{n}+1)]+2[(2 \mathrm{~m}+3)+(\mathrm{m}-2)(\mathrm{n}+2)+2(\mathrm{n}+1)]} \\
& +2(m+1) \mathrm{x}^{2[(m+2)+(m-2)(n+2)+2(n+1)]} \text {, where } m, n \geq 4 .
\end{aligned}
$$

1) Proof:Let P_{m} and P_{n} be paths with order m and n respectively. In $P_{m}, m-2$ vertices have degree 2 and 2 vertices have degree 1. In $P_{n}, n-2$ vertices have degree 2 and 2 vertices have degree 1 . Therefore in this graph $P_{m}+P_{n}, m-2$ vertices have degree $n+2 ; n-2$ vertices have degree $m+2,2$ vertices have degree $n+1$ and 2 vertices have degree $m+1$. Hence, sum of the number of adjacent vertices of all the vertices of degree $n+2$ is $(m-2)(n+2)$, sum of the degree of adjacent vertices of all the vertices of degree $n+2$ is $(m-4)[2(n+2)+(n-2)(m+2)+2(m+1)]+2[(2 n+3)+(n-2)(m+2)+$ $2(\mathrm{~m}+1)]$, sum of the number of adjacent vertices of all the vertices of degree $n+1$ is $2(n+1)$, sum of the degree of adjacent vertices of all the vertices of degree $n+1$ is $2[(n+2)+(n-2)(m+2)+2(m+1)]$, sum of the number of adjacent vertices of all the vertices of degree $m+2$ is $(n-2)(m+2)$, sum of the degree of adjacent vertices of all the vertices of degree $m+2$ is $(n-4)[2(m+2)+(m-2)(n+2)+2(n+1)]+2[(2 m+3)+(m-2)(n+2)+2(n+1)]$, sum of the number of adjacent vertices of all the vertices of degree $m+1$ is $2(m+1)$, sum of the degree of adjacent vertices of all the vertices of degree $m+1$ is $2[(m+2)+(m-2)(n+2)+2(n+1)]$.

This gives, $\mathrm{S}\left(\mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right)$

$$
=(\mathrm{m}-2)(\mathrm{n}+2) \mathrm{x}^{(\mathrm{m}-4)[2(\mathrm{n}+2)+(\mathrm{n}-2)(\mathrm{m}+2)+2(\mathrm{~m}+1)]+2[(2 \mathrm{n}+3)+(\mathrm{n}-2)(\mathrm{m}+2)+2(\mathrm{~m}+1)]}
$$

$$
+2(n+1) \mathrm{x}^{2[(n+2)+(n-2)(m+2)+2(m+1)]}
$$

$$
+(\mathrm{n}-2)(\mathrm{m}+2) \mathrm{x}^{(\mathrm{n}-4)[2(\mathrm{~m}+2)+(\mathrm{m}-2)(\mathrm{n}+2)+2(\mathrm{n}+1)]+2[(2 \mathrm{~m}+3)+(\mathrm{m}-2)(\mathrm{n}+2)+2(\mathrm{n}+1)]}
$$

$$
+2(m+1) \mathrm{x}^{2[(m+2)+(m-2)(n+2)+2(n+1)]} .
$$

D. Example 2.4

Consider the graph $P_{4} \cup P_{4}$, then $S\left(P_{4}+P_{4}, x\right)==24 x^{66}+20 x^{56}$.

Figure: 2.2

Here, $\mathrm{S}\left(\mathrm{P}_{4}+\mathrm{P}_{4}, \mathrm{x}\right)$

$$
\begin{aligned}
& \quad=(\mathrm{m}-2)(\mathrm{n}+2) \mathrm{x}^{(\mathrm{m}-4)[2(\mathrm{n}+2)+(\mathrm{n}-2)(\mathrm{m}+2)+2(\mathrm{~m}+1)]+2[(2 \mathrm{n}+3)+(\mathrm{n}-2)(\mathrm{m}+2)+2(\mathrm{~m}+1)]} \\
& +2(n+1) \mathrm{x}^{2[(n+2)+(n-2)(m+2)+2(m+1)]} \\
& +(\mathrm{n}-2)(\mathrm{m}+2) \mathrm{x}^{(\mathrm{n}-4)[2(\mathrm{~m}+2)+(\mathrm{m}-2)(\mathrm{n}+2)+2(\mathrm{n}+1)]+2[(2 \mathrm{~m}+3)+(\mathrm{m}-2)(\mathrm{n}+2)+2(\mathrm{n}+1)]} \\
& +2(m+1) \mathrm{x}^{2[(m+2)+(m-2)(n+2)+2(n+1)]} \\
& =12 \mathrm{x}^{66}+10 \mathrm{x}^{56}+12 \mathrm{x}^{66}+10 \mathrm{x}^{56} . \\
& =24 \mathrm{x}^{66}+20 \mathrm{x}^{56} .
\end{aligned}
$$

E. Theorem 2.5

Let P_{m} and P_{n} be paths with order m and n respectively. Then $S\left(s\left(P_{m} \cup P_{n}\right), x\right)=4[(m-2)+(n-2)] x^{12[(m-4)+(n-4)]+36}+$ $2[(\mathrm{~m}-2)+(\mathrm{n}-2)+4] \mathrm{x}^{8[(\mathrm{~m}-4)+(\mathrm{n}-4)]+48}+4 \mathrm{x}^{16}$, where $m, n \geq 4$.

1) Proof:Let P_{m} and P_{n} be paths with order m and n respectively. In $P_{m}, m-2$ vertices have degree 2 and 2 vertices have degree 1. In $P_{n}, n-2$ vertices have degree 2 and 2 vertices have degree 1 . Therefore in this graph $s\left(P_{m} \cup P_{n}\right), m-2$ vertices have degree $4 ; n-2$ vertices have degree $4, m$ vertices have degree $2 ; n$ vertices have degree 2 , and 4 vertices have degree 1 . Hence, sum of the number of adjacent vertices of all the vertices of degree 4 is $4[(m-2)+(n-2)]$, sum of the degree of adjacent vertices of all the vertices of degree 4 is $4(m+n)-20$, sum of the number of adjacent vertices of all the vertices of degree 2 is $2[(m-2)+(n-2)+4]$, sum of the degree of adjacent vertices of all the vertices of degree 2 is $8[(m-4)+$ $(n-4)]+48$, sum of the number of adjacent vertices of all the vertices of degree 1 is 4 , sum of the degree of adjacent vertices of all the vertices of degree 1 is 16 . This gives, $S\left(s\left(P_{m} \cup P_{n}\right), x\right)=4[(m-2)+(n-2)] x^{12[(m-4)+(n-4)]+36}$

$$
+2[(m-2)+(n-2)+4] x^{8[(m-4)+(n-4)]+48}+4 x^{16} .
$$

F. Example 2.6

Consider the graph $\mathrm{s}\left(\mathrm{P}_{3} \cup \mathrm{P}_{4}\right)$, then $\mathrm{S}\left(\mathrm{s}\left(\mathrm{P}_{4} \cup \mathrm{P}_{4}\right), \mathrm{x}\right)==16 \mathrm{x}^{36}+16 \mathrm{x}^{48}+4 \mathrm{x}^{16}$.

Figure: 2.3

Here, $S\left(s\left(P_{m} \cup P_{n}\right), x\right)=4[(m-2)+(n-2)] x^{12[(m-4)+(n-4)]+36}$

$$
\begin{aligned}
& +2[(m-2)+(n-2)+4] x^{8[(m-4)+(n-4)]+48}+4 x^{16} . \\
& =16 x^{36}+16 x^{48}+4 x^{16}
\end{aligned}
$$

G. Theorem 2.7

Let P_{m} and P_{n} be paths with order m and n respectively.
Then $\quad S\left(D S\left(P_{m} \cup P_{n}\right), x\right)=3[(m-2)+(n-2)] x^{(n-4)(n+4)+(m-4)(m+4)+2(m+n-4)+20}+(m-2) x^{3(m-2)}+(n-2) x^{3(n-2)}+$ $12 \mathrm{x}^{28}$, where $m, n \geq 4$.

1) Proof:Let P_{m} and P_{n} be paths with order m and n respectively. In $\mathrm{P}_{\mathrm{m}}, m-2$ vertices have degree 2 and 2 vertices have degree 1. In $P_{n}, n-2$ vertices have degree 2 and 2 vertices have degree 1 . Therefore in this graph $\operatorname{DS}\left(P_{m} \cup P_{n}\right), m-2$ and $n-2$ vertices have degree $3 ; 1$ vertex has degree $m-2,1$ vertex has degree $n-2,6$ vertices have degree 2 . Hence, sum of the number of adjacent vertices of all the vertices of degree 3 is $3[(m-2)+(n-2)]$, sum of the degree of adjacent vertices of all the vertices of degree 3 is $(n-4)(n+4)+(m-4)(m+4)+2(m+n-4)+20$, sum of the number of adjacent vertices of all the vertices of degree $m-2$ is $m-2$, sum of the degree of adjacent vertices of all the vertices of degree $m-2$ is 3 ($m-$ 2), sum of the number of adjacent vertices of all the vertices of degree $n-2$ is $n-2$, sum of the degree of adjacent vertices of all the vertices of degree $n-2$ is $3(n-2)$, sum of the number of adjacent vertices of all the vertices of degree 2 is 12 , sum of the degree of adjacent vertices of all the vertices of degree 2 is 28 . This gives, $S\left(D S\left(P_{m} \cup P_{n}\right), x\right)=3[(m-2)+(n-$ 2) $] \mathrm{x}^{(\mathrm{n}-4)(\mathrm{n}+4)+(\mathrm{m}-4)(\mathrm{m}+4)+2(\mathrm{~m}+\mathrm{n}-4)+20}$

$$
+(m-2) x^{3(m-2)}+(n-2) x^{3(n-2)}+12 x^{28}, \text { where } m, n \geq 4 .
$$

H. Example 2.8

Consider the graph $D S\left(\mathrm{P}_{4} \cup \mathrm{P}_{4}\right)$, then $\mathrm{S}\left(D S\left(\mathrm{P}_{4} \cup \mathrm{P}_{4}\right), \mathrm{x}\right)==12 \mathrm{x}^{28}+2 \mathrm{x}^{6}+2 \mathrm{x}^{6}+12 \mathrm{x}^{28}$.

Here, $\mathrm{S}\left(\mathrm{DS}\left(\mathrm{P}_{\mathrm{m}} \cup \mathrm{P}_{\mathrm{n}}\right), \mathrm{x}\right)=3[(4-2)+(4-2)] \mathrm{x}^{(4-4)(4+4)+(4-4)(4+4)+2(4+4-4)+20}$

$$
\begin{aligned}
& +(4-2) \mathrm{x}^{3(4-2)}+(4-2) \mathrm{x}^{3(4-2)}+12 \mathrm{x}^{28} \\
= & 12 \mathrm{x}^{28}+2 \mathrm{x}^{6}+2 \mathrm{x}^{6}+12 \mathrm{x}^{28}
\end{aligned}
$$

International Conference on Mathematical Impacts in Science and Technology(MIST-17), November 2017

REFERENCES

[1] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., (25-26) (1980-81), 13-16
[2] E. Sukumaran, "Adjacent vertex sum polynomial" IJMA-6(6), 2015, 7-1
[3] Frank Harary, 1872,"Graph Theory", Addition - Wesley Publishing Company
[4] Gary Chartrant and Ping Znank, "Introduction to Graph Theory", Tata McGraw-Hill Edition
[5] S. S. Sandhya, C. Jeyasekaran, C. D. Raj (2013), "Harmonic Mean Labelling Of Degree Splitting Graphs" Bulletin of Pure and Applied Sciences, 32 E , 99-112.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

