
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Bipolar Multi-Fuzzy Subalgebra Of Bg-Algebra

R. Muthuraj ${ }^{1,}$ S. Devi ${ }^{2}$
${ }^{1} P G$ and Research Department of Mathematics, H.H.The Rajah's College,Pudhukottai-622001,Tamilnadu, India
${ }^{2}$ Department of Mathematics, PSNA College of Engineering and Technology,Dindigul-624622, Tamilnadu, India

Abstract

In this paper, we introduce the notion of bipolar multi-fuzzy subalgebra of BG-algebra by combining the two concepts of bipolar fuzzy sets and multi-fuzzy sets and discuss some of its properties. Also we define the level subsets positive t-cut and negative s-cut of bipolar multi-fuzzy BG-algebra and study some of its related properties. Keywords : Bipolar fuzzy set, Multi-fuzzy set, BG-algebra, Fuzzy BG-subalgebra, Multi-fuzzy BG-subalgebra, Bipolar multifuzzy BG-subalgebra, positive t-cut, negative s-cut. AMS Subject Classification (2010) : 06F35, 03G25, 08A72, 03E72.

I. INTRODUCTION

The notion of a fuzzy subset was initially introduced by Zadeh [8] in 1965, for representing uncertainity. In 2000, S.Sabu and T.V.Ramakrishnan [9,10] proposed the theory of multi-fuzzy sets in terms of multi-dimensional membership functions and investigated some properties of multilevel fuzziness. Theory of multi-fuzzy set is an extension of theory of fuzzy sets. Among these theories, a well-known extension of the classic fuzzy set is bipolar fuzzy set theory, which was pioneered by Zhang[11]. Bipolar fuzzy sets are an extension of fuzzy sets whose membership degree range is increased from the interval $[0,1]$ to $[-1,1]$. In bipolar fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degrees on $(0,1]$ denotes that elements somewhat satisfy the property and the membership degrees on $[-1,0)$ means that elements somewhat satisfy the implicit counter-property. Although bipolar fuzzy sets and intuitionistic fuzzy sets look similar to each other, they are different sets.
Y.Imai and K.Iseki introduced two classes of abstract algebras: BCK algebras and BCI-algebras [1,2,3]. It is shown that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J.Neggers and H.S.Kim [4] introduced a new notion, called a Balgebra. In 2005, C.B.Kim and H.S.Kim [5] introduced the notion of a BG-algebra which is a generalization of B-algebras. With these ideas, fuzzy subalgebras of BG-algebra were developed by S.S.Ahn and H.D.Lee[6]. In 2015, T.Senapati[7] introduced the concepts of bipolar fuzzy subalgebra in BG-algebra. In this paper, we introduce the notion of bipolar multi-fuzzy BG-subalgebra and discuss some of its properties.

II. PRELIMINARIES

In this section we site the fundamental definitions that will be used in the sequel.

A. Definition 2.1

Let X be a non-empty set. A multi-fuzzy set A in X is defined as as a set of ordered sequences:
$A=\left\{\left(x, \mu_{1}(x), \mu_{2}(x), \ldots \ldots, \mu_{i}(x), \ldots ..\right): x \in X\right\}$, where $\mu_{i}: X \rightarrow[0,1]$ for all i.

1) Remarks
a) If the sequences of the membership functions have only k -terms (finite number of terms), k is called the dimension of A .
b) The set of all multi-fuzzy sets in X of dimension k is denoted by $\mathrm{M}^{\mathrm{k}} \mathrm{FS}(\mathrm{X})$
c) The multi-fuzzy membership function μ_{A} is a function from X to $[0,1]^{\mathrm{k}}$ such that for all $\mathrm{x} \mathrm{X}, \mu_{\mathrm{A}}(\mathrm{x})=\left(\mu_{1}(\mathrm{x}), \mu_{2}(\mathrm{x}), \ldots \ldots, \mu_{\mathrm{k}}(\mathrm{x})\right)$.
d) For the sake of simplicity, we denote the multi-fuzzy set $\mathrm{A}=\left\{\left(\mathrm{x}, \mu_{1}(\mathrm{x}), \mu_{2}(\mathrm{x}), \ldots \ldots, \mu_{\mathrm{k}}(\mathrm{x})\right): \mathrm{x} \in \mathrm{X}\right\}$ as $\mathrm{A}=\left(\mu_{1}, \mu_{2}, \ldots \ldots, \mu_{k}\right)$.
B. Definition 2.2

Let k be a positive integer and let A and B in $M^{k} F S(X)$, where $A=\left(\mu_{1}, \mu_{2}, \ldots \ldots, \mu_{k}\right)$ and $B=\left(v_{1}, v_{2}, \ldots \ldots . . v_{k}\right)$, then we have the following relations and operations:

1) A \subseteq B if and only if $\mu_{i} \leq v_{i}$, for all $i=1,2, \ldots \ldots \ldots . . ., k$;
2) $A=B$ if and only if $\mu_{i}=v_{i}$, for all $i=1,2, \ldots \ldots \ldots . .$. ,k;
3) $A \cup B=\left(\mu_{1} \cup v_{1}, \ldots \ldots \mu_{k} \cup v_{k}\right)=\left\{\left(x, \max \left(\mu_{1}(x), v_{1}(x)\right), \ldots \max \left(\mu_{k}(x), v_{k}(x)\right): x \in X\right\}\right.$
4) $A \cap B=\left(\left(\mu_{1} \cap v_{1}, \ldots \ldots \mu_{k} \cap v_{k}\right)=\left\{\left(x, \min \left(\mu_{1}(x), v_{1}(x)\right), \ldots . \min \left(\mu_{k}(x), v_{k}(x)\right): x \in X\right\}\right.\right.$
C. Definition 2.3

Let X be a non-empty set. A bipolar fuzzy set φ in X is an object having the form $\left.\varphi=\left\{<\mathrm{x}, \varphi^{+}(\mathrm{x}), \varphi^{-}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$ where $\varphi^{+}(\mathrm{x}): \mathrm{X}$ $\rightarrow[0,1]$ and $\varphi^{-}(\mathrm{x}): \mathrm{X} \rightarrow[-1,0]$ are the mappings.
We use the positive membership degree $\varphi^{+}(x)$ to denote the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set φ and the negative membership degree $\varphi^{-}(x)$ to denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar fuzzy set φ. If $\varphi^{+}(x) \neq 0$ and $\varphi^{-}(x)=0$, it is the situation that x is regarded as having only positive satisfaction for φ. If $\varphi^{+}(x)=0$ and $\varphi^{-}(x) \neq 0$, it is the situation that x does not satisfy the property of φ but somewhat satisfies the counter-property of φ. It is possible for an element x to be such that $\varphi^{+}(x) \neq 0$ and $\varphi^{-}(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X.

D. Definition 2.4

Let X be a non-empty set. A bipolar multi-fuzzy set A in X is defined as an object of the form $A=\left\{\left\langle x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle: x \in X\right\}$ where $\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x}): \mathrm{X} \rightarrow[0,1]$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}): \mathrm{X} \rightarrow[-1,0]$
The positive membership degree $\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x})$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set A and the negative membership degree $\mathrm{A}_{i}^{-}(\mathrm{x})$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar fuzzy set A. If $A_{i}^{+}(x) \neq 0$ and $A_{i}^{-}(x)=0$, it is the situation that x is regarded as having only positive satisfaction for A. If $A_{i}^{+}(x)=0$ and $A_{i}^{-}(x) \neq 0$, it is the situation that x does not satisfy the property of A but somewhat satisfies the counter-property of A. It is possible for an element x to be such that $A_{i}^{+}(x) \neq 0$ and $A_{i}^{-}(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X, where $i=1,2, \ldots . n$

E. Example 2.5

Let $\mathrm{X}=\{1, \mathrm{~m}, \mathrm{n}\}$ be a set. Then $\mathrm{A}=\{\langle 1,0.5,0.6,0.4,-0.3,-0.5,-0.6\rangle,\langle\mathrm{m}, 0.8,0.4,0.2,-0.5,-0.8,-0.1\rangle,\langle\mathrm{n}, 0.3,0.2,0.1,-0.7$, $-0.6,-0.2>\}$ is a bipolar multi-fuzzy set of X.

F. Definition 2.6

Non-empty set X with a constant 0 and a binary operation " $*$ " is called a BG-algebra if it satisfies the following axioms:

1) $\mathrm{x} * \mathrm{x}=0$
2) $x * 0=x$
3) $(\mathrm{x} * \mathrm{y}) *(0 * y)=\mathrm{x}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
G. Example 2.7

Let $\mathrm{X}=\{0,1,2\}$ be a set with the following table

$*$	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then $(X ; *, 0)$ is a BG-algebra.

H. Definition 2.8

Let S be a non-empty subset of a $B G$-algebra X, then S is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

I. Definition 2.9

Let μ be a fuzzy set in BG-algebra. Then μ is called a fuzzy subalgebra of X if

$$
\mu(x * y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in X
$$

II. BIPOLAR MULTI-FUZZY BG-SUBALGEBRA

In this section, the concept of bipolar multi-fuzzy subalgebra of BG-algebra is defined and their related properties are presented.

A. Definition 3.1

Let $A=\left\{\left\langle x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle / x \in X\right\}$ be a bipolar multi-fuzzy set in X, then the set A is bipolar multi-fuzzy BG-subalgebra over the binary operator $*$ if it satisfies the following conditions :

1) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$
2) $\mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{x} * \mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{y})\right\}$

B. Example 3.2

Let $X=\{0,1,2,3\}$ be a BG-algebra with the following cayley table

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Let $A=\left\{\left\langle x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle / x \in X\right\}$ be a bipolar multi-fuzzy set defined by
$\mathrm{A}=\{\langle 0,0.6,0.7,0.3,-0.7,-0.5,-0.4\rangle,\langle 1,0.5,0.4,0.2,-0.5,-0.3,-0.2\rangle,\langle 2,0.4,0.3,0.1,-0.4,-0.2,-0.1\rangle,\langle 3,0.4,0.3,0.1$, $-0.4,-0.2,-0.1>\}$. Clearly, A is a bipolar multi-fuzzy BG-subalgebra in X.
C. Preposition 3.3

If $A=\left\{\left\langle x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle / x \in X\right\}$ is a bipolar multi-fuzzy subalgebra in X, then for all $x \in X, A_{i}^{+}(0) \geq A_{i}^{+}(x)$ and $A_{i}{ }^{-}(0) \leq$ $\mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{x})$.

1) Proof: Let $\mathrm{x} \in \mathrm{X}$.

Then $\mathrm{A}_{\mathrm{i}}^{+}(0)=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{x}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x})$

$$
\mathrm{A}_{\mathrm{i}}^{-}(0)=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{x}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})
$$

D. Theorem 3.4

If a bipolar multi-fuzzy set $\left.A=\left\{<x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle / x \in X\right\}$ is a bipolar multi-fuzzy subalgebra, then for all $x \in X, A_{i}^{+}(0 *$ $\mathrm{x}) \geq \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ and $\mathrm{A}_{\mathrm{i}}^{-}(0 * \mathrm{x}) \leq \mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{x})$.

1) Proof: Let $\mathrm{x} \in \mathrm{X}$

Then $\mathrm{A}_{\mathrm{i}}^{+}(0 * \mathrm{x}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}{ }^{+}(0), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}$

$$
=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}
$$

$$
\geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}, \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}
$$

$$
=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}
$$

$$
=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})
$$

$\mathrm{A}_{\mathrm{i}}^{-}(0 * \mathrm{x}) \leq \max \left\{\mathrm{A}_{\mathrm{i}^{-}}(0), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}$
$=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}$
$\leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}, \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}$
$=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{x})\right\}$
$=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$

E. Theorem 3.5

Let $A=\left\{\left\langle x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle / x \in X\right\}$ and $B=\left\{\left\langle x, B_{i}^{+}(x), B_{i}^{-}(x)\right\rangle / x \in X\right\}$ be two bipolar multi-fuzzy subalgebras of X. Then $\mathrm{A} \cap \mathrm{B}$ is a bipolar multi-fuzzy subalgebra in X .

1) Proof:

Let $x, y \in A \cap B$
Then $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ and B .

$$
\begin{aligned}
\mathrm{A}_{\mathrm{i}}^{+} \cap \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}) & =\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y})\right\} \\
& \geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}, \min \left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\} \\
& =\min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\} \\
& =\min \left\{\mathrm{A}_{\mathrm{i}}^{+} \cap \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+} \cap \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}
\end{aligned}
$$

```
A}\mp@subsup{\textrm{i}}{\textrm{i}}{-}\cap\mp@subsup{\textrm{B}}{\textrm{i}}{-
    \leqmax {max { ( }\mp@subsup{\textrm{A}}{\textrm{i}}{-}(\textrm{x}),\mp@subsup{\textrm{A}}{\textrm{i}}{-}(\textrm{y})},\operatorname{max}{\mp@subsup{\textrm{B}}{\textrm{i}}{-}(\textrm{x}),\mp@subsup{\textrm{B}}{\textrm{i}}{-}(\textrm{y})}
    = max { max { A Ai
    = max { A Ai}\cap\cap\mp@subsup{B}{i}{-
```


F. Preposition 3.6

The union of any set of bipolar multi-fuzzy subalgebras need not be a bipolar multi-fuzzy subalgebra .

G. Theorem 3.7

If $A=<A_{i}^{+}, A_{i}^{-}>$is a bipolar multi-fuzzy subalgebra of X, then $H=\left\{x \in X / A_{i}^{+}(x)=1, A_{i}^{-}(x)=-1\right\}$ is either empty or a subalgebra of X .

1) Proof: If no element satisfies the conditions of H, then the set H is empty. If x and $y \in H$ then $A_{i}^{+}(x)=1, A_{i}^{-}(x)=-1, A_{i}^{+}(y)$ $=1, \mathrm{~A}_{\mathrm{i}}{ }^{-}(\mathrm{y})=-1$.
Since A is a bipolar multi-fuzzy subalgebra of $X, A_{i}^{+}(x * y) \geq \min \left\{A_{i}^{+}(x), A_{i}^{+}(y)\right\}=\min \{1,1\}=1$ and also $A_{i}^{+}(x * y)$ ≤ 1
Therefore $\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x} * \mathrm{y})=1$
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \{-1,-1\}=-1$ and also $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \geq-1$
Therefore $A_{i}^{-}(x * y)=-1$
Hence $x * y \in H$
Therefore H is a subalgebra of X .
H. Theorem 3.8

Let $\mathrm{A}=\left\langle\mathrm{A}_{\mathrm{i}}^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$be a bipolar multi-fuzzy subalgebra of X .
If $A_{i}^{+}(x * y)=0$ then either $A_{i}^{+}(x)=0$ or $A_{i}^{+}(y)=0$ for x and $y \in X$
If $A_{i}^{-}(x * y)=0$ then either $A_{i}^{-}(x)=0$ or $A_{i}^{-}(y)=0$ for x and $y \in X$

1) Proof: Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ i.e., $0 \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$

This implies that either $A_{i}^{+}(x)=0$ or $A_{i}^{+}(y)=0 A_{i}^{-}(x * y) \leq \max \left\{A_{i}^{-}(x), A_{i}^{-}(y)\right\}$ i.e., $0 \leq \max \left\{A_{i}^{-}(x), A_{i}^{-}(y)\right\}$
This implies that either $A_{i}^{-}(x)=0$ or $A_{i}^{-}(y)=0$
I. Theorem 3.9

If $A=\left\langle A_{i}^{+}, A_{i}^{-}>\right.$be a bipolar multi-fuzzy subalgebra of X, then the set $H=\left\{x \in X / A_{i}^{+}(x)=A_{i}^{+}(0)\right.$ and $\left.A_{i}^{-}(x)=A_{i}^{-}(0)\right\}$ is a subalgebra of X .

1) Proof :Let $\mathrm{x}, \mathrm{y} \in \mathrm{H}$

Then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}(0)$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}(0)$
$\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x} * \mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}{ }^{+}(0), \mathrm{A}_{\mathrm{i}}{ }^{+}(0)\right\}=\mathrm{A}_{\mathrm{i}}^{+}(0)$
Also $\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x} * \mathrm{y}) \leq \mathrm{A}_{\mathrm{i}}{ }^{+}(0)$
Therefore $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y})=\mathrm{A}_{\mathrm{i}}{ }^{+}(0)$
And $\mathrm{A}_{\mathrm{i}^{-}}(\mathrm{x} * \mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(0), \mathrm{A}_{\mathrm{i}}^{-}(0)\right\}=\mathrm{A}_{\mathrm{i}}^{-}(0)$
Also $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \geq \mathrm{A}_{\mathrm{i}}^{-}(0)$
This implies that $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}(0)$
Therefore $\mathrm{x} * \mathrm{y} \in \mathrm{H}$
H is a subalgebra of X .

III. LEVEL SUBSETS OF A BIPOLAR MULTI-FUZZY SET

In this section, the positive t-cut and negative s-cut of a bipolar multi-fuzzy set is defined and some properties are discussed.

A. Definition 4.1

Let $A=\left\{\left\langle x, A_{i}^{+}(x), A_{i}^{-}(x)\right\rangle / x \in X\right\}$ be a bipolar multi-fuzzy subalgebra of X. For $s \in[-1,0]$ and $t \in[0,1]$, the set $U\left(A_{i}^{+} ; t\right.$ $)=\left\{x \in X ; \quad A_{i}^{+}(x) \geq t\right\}$ is called positive t-cut of A and the set $L\left(A_{i}^{-} ; t\right)=\left\{x \in X ; A_{i}^{-}(x) \leq s\right\}$ is called negative s-cut of A.

B. Theorem 4.2

If $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$is a bipolar multi-fuzzy subalgebra of X, then the positive t-cut and negative s-cut of A are subalgebras of X.

1) Proof: Let $\mathrm{x}, \mathrm{y} \in \mathrm{U}\left(\mathrm{A}_{\mathrm{i}}^{+}\right.$; t$)$

Then $\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x}) \geq \mathrm{t}$ and $\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y}) \geq \mathrm{t}$
$\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y})\right\} \geq \min \{\mathrm{t}, \mathrm{t}\}=\mathrm{t}$
Therefore $x * y \in U\left(A_{i}^{+} ; t\right)$
Hence $U\left(\mathrm{~A}_{\mathrm{i}}^{+} ; \mathrm{t}\right)$ is a subalgebra in X .
Let $\mathrm{x}, \mathrm{y} \in \mathrm{L}\left(\mathrm{A}_{\mathrm{i}}{ }^{-} ; \mathrm{s}\right)$
Then $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}) \leq \mathrm{s}$ and $\mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{y}) \leq \mathrm{s}$
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\} \leq \max \{\mathrm{s}, \mathrm{s}\}=\mathrm{s}$
Therefore $x * y \in L\left(A_{i}{ }^{-} ; s\right)$
Hence $L\left(A_{i}{ }^{-} ; s\right)$ is a subalgebra in X.

C. Theorem 4.3

Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a multi-fuzzy set in X, such that the level sets $U\left(A_{i}^{+} ; t\right)$ and $L\left(A_{i}^{-} ; s\right)$ are subalgebras of X for every $s \in$ $[-1,0]$ and $t \in[0,1]$. Then A is a bipolar multi-fuzzy subalgebra in X.

1) Proof: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a multi-fuzzy set in X, such that the level sets $U\left(A_{i}^{+} ; t\right)$ and $L\left(A_{i}^{-}\right.$; s) are subalgebras of X for every $s \in[-1,0]$ and $t \in[0,1]$.
In contrary, let $x_{0}, y_{0} \in X$ be such that $A_{i}^{+}\left(x_{0} * y_{0}\right)<\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{0}\right)\right\}$ and $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)>\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{0}\right)\right\}$
Let $\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0}\right)=, \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{0}\right)=\beta, \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0}\right)=\gamma, \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{0}\right)=\delta, \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)=\mathrm{t}, \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)=\mathrm{s}$
Then $\mathrm{t}<\min \{, \beta\}$ and $\mathrm{s}>\max \{\gamma, \delta\}$
Put $\mathrm{t}_{1}=\frac{1}{2}\left[\mathrm{~A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)+\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{0}\right)\right\}\right]$
and $\mathrm{s}_{1}=\frac{1}{2}\left[\mathrm{~A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)+\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{0}\right)\right\}\right]$
This implies, $\mathrm{t}_{1}=\frac{1}{2}[\mathrm{t}+\min \{\alpha, \beta\}]$ and $\mathrm{s}_{1}=\frac{1}{2}[\mathrm{~s}+\max \{\gamma, \delta\}]$
Hence $\alpha>\mathrm{t}_{1}=\frac{1}{2}[\mathrm{t}+\min \{\alpha, \beta\}]>\mathrm{t}, \quad \beta>\mathrm{t}_{1}=\frac{1}{2}[\mathrm{t}+\min \{\alpha, \beta\}]>\mathrm{t}$
and $\quad \gamma<\mathrm{s}_{1}=\frac{1}{2}[\mathrm{~s}+\max \{\gamma, \delta\}]<\mathrm{s}, \delta<\mathrm{s}_{1}=\frac{1}{2}[\mathrm{~s}+\max \{\gamma, \delta\}]<\mathrm{s}$
$\Rightarrow \min \{\alpha, \beta\}>\mathrm{t}_{1}>\mathrm{t}=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)$ and $\max \{\gamma, \delta\}<\mathrm{s}_{1}<\mathrm{s}=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)$
So that $\mathrm{x}_{0} * \mathrm{y}_{0} \notin \mathrm{U}\left(\mathrm{A}_{\mathrm{i}}^{+} ; \mathrm{t}\right)$ and $\mathrm{x}_{0} * \mathrm{y}_{0} \notin \mathrm{~L}\left(\mathrm{~A}_{\mathrm{i}^{-}} ; \mathrm{s}\right)$ which is a contradiction, since
$\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{0}\right)=\alpha \geq \min \{\alpha, \beta\}>\mathrm{t}_{1}, \mathrm{~A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{0}\right)=\beta \geq \min \{\alpha, \beta\}>\mathrm{t}_{1}$ and $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{0}\right)=\gamma \leq \max \{\gamma, \delta\}<\mathrm{s}_{1}, \mathrm{~A}_{\mathrm{i}^{-}}\left(\mathrm{y}_{0}\right)=\delta \leq \max \{\gamma, \delta\}<\mathrm{s}_{1}$
This implies that $\mathrm{x}_{0}, \mathrm{y}_{0} \in \mathrm{U}\left(\mathrm{A}_{\mathrm{i}}{ }^{+} ; \mathrm{t}\right)$ and $\mathrm{x}_{0}, \mathrm{y}_{0} \in \mathrm{~L}\left(\mathrm{~A}_{\mathrm{i}}^{-} ; \mathrm{s}\right)$
Thus $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$, for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Hence A is a bipolar multi-fuzzy subalgebra of X.
D. Theorem 4.4

Any BG-subalgebra of X can be realized as both the positive t -cut and negative s-cut of some bipolar multi-fuzzy subalgebra in X .

1) Proof: Let S be a subalgebra of a BG -algebra X and $\mathrm{A}=\left\langle\mathrm{A}_{\mathrm{i}}{ }^{+}, \mathrm{A}_{\mathrm{i}}{ }^{-}\right\rangle$be a bipolar multi-fuzzy set in X defined by
$\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x})=\left\{\begin{array}{l}\lambda_{\mathrm{i}}, \text { if } \mathrm{x} \in \mathrm{S} \\ 0, \text { otherwise }\end{array}\right.$
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\begin{array}{r}\tau_{\mathrm{i}}, \text { ff } \mathrm{x} \in \mathrm{S} \\ 0 \quad, \text { otherwise }\end{array}$ for all $\lambda_{\mathrm{i}} \in[0,1], \tau_{\mathrm{i}} \in[-1,0]$
We consider the following four cases:
a) $\operatorname{Case}(i):$ If $\mathrm{x}, \mathrm{y} \in \mathrm{S}$, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\lambda_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y})=\lambda_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\tau_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\tau_{\mathrm{i}}$

Since S is a subalgebra of $X, x * y \in S$
$A_{i}^{+}(x * y)=\lambda_{i}=\min \left\{\lambda_{i}, \lambda_{i}\right\}=\min \left\{A_{i}^{+}(x), A_{i}^{+}(y)\right.$ and
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y})=\tau_{\mathrm{i}}=\max \left\{\tau_{\mathrm{i}}, \tau_{\mathrm{i}}\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{-}(\mathrm{y})\right\}$
b) Case (ii): If $\mathrm{x} \in \mathrm{S}$ and $\mathrm{y} \notin \mathrm{S}$, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\lambda_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=0, \mathrm{~A}_{\mathrm{i}}^{-}(\mathrm{x})=\tau_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$

This implies that either $x * y \in S$ or $\notin S$.
$\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x} * \mathrm{y}) \geq 0=\min \left\{\lambda_{\mathrm{i}}, 0\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y})\right.$ and
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \leq 0=\max \left\{\tau_{\mathrm{i}}, 0\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$
c) Case (iii): If $\mathrm{x} \notin \mathrm{S}$ and $\mathrm{y} \in \mathrm{S}$, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0, \mathrm{~A}_{\mathrm{i}}{ }^{+}(\mathrm{y})=\lambda_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0, \mathrm{~A}_{\mathrm{i}}^{-}(\mathrm{y})=\tau_{\mathrm{i}}$

This implies that either $x * y \in S$ or $\notin S$.
$\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x} * \mathrm{y}) \geq 0=\min \left\{0, \lambda_{\mathrm{i}}\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y})\right.$ and
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \leq 0=\max \left\{0, \tau_{\mathrm{i}}\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$
d) Case (iv): $\mathrm{x} \notin \mathrm{S}$ and $\mathrm{y} \notin \mathrm{S}$, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0, \mathrm{~A}_{\mathrm{i}}{ }^{+}(\mathrm{y})=0, \mathrm{~A}_{\mathrm{i}}{ }^{-}(\mathrm{x})=0, \mathrm{~A}_{\mathrm{i}}^{-}(\mathrm{y})=0$

This implies that either $x * y \in S$ or $\notin S$.
$\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x} * \mathrm{y}) \geq 0=\min \{0,0\}=\min \left\{\mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}{ }^{+}(\mathrm{y})\right.$ and
$\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x} * \mathrm{y}) \leq 0=\max \{0,0\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$
Thus, in all the cases, $\mathrm{A}=\left\langle\mathrm{A}_{\mathrm{i}}{ }^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$is bipolar multi-fuzzy subalgebra in X .

REFERENCES

[1] Y.Imai and K.Iseki, On axiom system of propositional calculi, 15 Proc,Japan Academy,42(1966), pp: 19-22.
[2] K.Iseki and S.Tanaka, An introduction to theory of BCK- algebras, Math. Japonica, 23 (1978), pp: 1-26.
[3] K.Iseki, On BCI-algebras, Math. Seminor Notes 8 (1980), pp:125-130.
[4] J.Neggers and H.S.Kim, On B-algebras, Mat. Vesnik 54 (2002), 21-29.
[5] C.B.Kim and H.S.Kim, On BG-algebras, Demonstratio Mathematica, 41(2008), pp:497-505.
[6] S.S.Ahn and D.Lee, Fuzzy subalgebras of BG algebras, Commun. Korean Math.Soc, 19 (2004), No 2, pp: 243-251.
[7] T.Senapati, Bipolar Fuzzy Structure of BG-subalgebras, The Journal of Fuzzy Mathematics, Vol. 23 , No.1, (2015), pp: 209-220
[8] L.A.Zadeh, Fuzzy Sets, Information and Control, 8(1965), pp: 338-353
[9] S.Sabu and T.V.Ramakrishnan, Multi-fuzzy sets, International Mathematical Forum, 50(2010) ,pp: 2471-2476.
[10] S.Sabu and T.V.Ramakrishnan, Multi-fuzzy Topology, International Journal of Applied Mathematics, Vol 24, No.1(2011), pp:117-129.
[11] W.R.Zhang, Bipolar fuzzy sets and relations, A computational framework for cognitive modeling and multiagent analysis, Proceedings of IEEE Conf., (1994) ,pp:305-309.
[12] K.M.Lee, Bipolar-valued fuzzy sets and their operations, Proc.Int.Conf. On Intelligent Technologies, Bangkok, Thailand, (2000), pp: 307-312
[13] W.R.Zhang and L.Zhang, Yin Yang bipolar logic and bipolar fuzzy logic, Inform.Sci., 165(3-4), (2004), pp: 265-287
[14] K.J.Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull Malays. Math.Sci.Soc.,32(3) (2009), pp:361-373.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

