

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2017 Issue: onferendelonth of publication: December 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Lehmer-3 Mean Number of Graphs

S. Somasundaram¹, T.S. Pavithra²

¹Professor in Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012 ²Research Scholar, Manonmaniam Sundaranar University, Tirunelveli-627012.

I. INTRODUCTION

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are denoted by V(G) and E(G) respectively. A path of length n is denoted by P_n . For standard terminology and notations we follow Harrary[1]. S Somasundaram & S.S Sandhya introduced the concept of Harmonic Mean Labeling of Graphs in [2] .We will provide a brief summary of other information's which are necessary for our present investigation.

A. Definition 1.1

A graph G=(V,E) with P vertices and q edges is called Lehmer -3 mean graph. If it is possible to label vertices x CV with distinct labels f(x) from 1,2,3,...,q+1 in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left|\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right|$, then the edge labels are distinct. In this case "f" is called Lehmer -3 mean labeling of G.

B. Definition 1.2

Let G be a graph and f:V(G) \rightarrow {1,2,...,n} be a function such that the label of the edge f (e=uv) is Labeled with $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, where {(f(e);eE(G)} \subseteq {1,2,...,n}. If n is the smallest positive integer satisfying this condition together with the condition that there is no edges in common. Then n is called the Lehmer-3 mean number of a graph G and is denoted as L_{3m} (G).

II. MAIN RESULTS

A. Theorem :2.1

 $L_{3m}\left(P_{n}\right)=n.$

1) Proof : Let $u_1, u_2, \dots u_n$ be the vertices of the path P_n . Define a function $f: V(P_n) \rightarrow \{1, 2, \dots n\}$ by $f(u_1)=1$, $f(u_i)=i+1$; $2 \le i \le n$. Then the edge labels are $f(u_i u_{i+1}) = i$; $1 \le i \le n-1$, $f(u_{n-1} u_n) = n$. Thus $L_{3m}(P_n) = n$.

B. Example 2.2 Lehmer-3 mean number of P_7 is $L_{3m}(P_n) = n = 7$ is given below.

C. Theorem :2.3

 $L_{3m}(C_n) = n + 1$

1) Proof : Let C_n be a cycle of n vertices $u_1, u_2, \dots u_n, u_1$. We define a function $f: V(C_n) \rightarrow \{1, 2, \dots n\}$ by $f(u_1)=1$, $f(u_i)=i+1$; $2 \le i \le n$. Then the distinct edge labels are $f(u_i u_{i+1}) = i+1$; $1 \le i \le n-1$, $f(u_n u_1) = n+1$. Thus $L_{3m}(C_n) = n+1$.

D. Example 2.4

 $L_{3m}(C_8) = n+1 = 8+1 = 9$ is displayed below.

Figure-2

E. Theorem :2.5

 $L_{3m} \left(P_n \ \Theta K_1 \right) = 2n.$

- $\begin{array}{ll} 1) & Proof: Let \ G \ be \ a \ P_n \ \Theta K_1, \ graph \ and \ its \ vertices \ u_1, \ u_2, \ \ldots u_n, \ v_1, \ v_2, \ \ldots v_n. \ respectively. \ Let \ us \ define \ a \ function \\ f: V(G) \rightarrow \{1, 2, \ldots n\} \ by \ f(u_1) = 1, \ f(u_i) = \ 2i \ ; \ 2 \leq i \leq n, \ f(v_i) = \ 2i + 1 \ ; \ 1 \leq i \leq n. \ and \ the \ obtained \ distinct \ edge \ labels \ are \ f(u_i, u_{i+1}) = 2i + 1 \ ; \ 1 \leq i \leq n 1, \ f(u_i \ v_i) = \ 2i \ ; \ 1 \leq i \leq n 1, \ f(u_n \ v_n) = \ 2n \\ \end{array}$ Hence $L_{3m} \ (P_n \ \Theta K_1) = 2n$

F. Example 2.6

 $L_{3m} (P_6 \odot K_1) = 2n = 2x6 = 12$ is given below

G. Theorem :2.7

- $L_{3m} (P_n \Theta K_1) \Theta K_1) = 3n.$
- $\begin{aligned} I) \quad & Proof: \text{Let G be a graph of n vertices } u_1, u_2, \dots u_n, v_1, v_2, \dots v_n, w_1, w_2, \dots w_n \text{ respectively. Define a function } f:V(G) \rightarrow \{1,2,\dots,n\} \\ & \text{by } f(u_1)=1, f(u_i)=3i-1; \ 2 \leq i \leq n, \ f(v_i)=3i; \ 1 \leq i \leq n, \ f(w_i)=3i+1; \ 1 \leq i \leq n. \ \text{then the distinct edge labels are } f(u_i, u_{i+1})=3i+1; \ 1 \leq i \leq n-1, \ f(u_i, v_i)=3i-1; \ 1 \leq i \leq n, \ f(v_iw_i)=3i; \ 1 \leq i \leq n-1 \ \text{and} \ f(v_nw_n)=3n. \ \text{Therefore } L_{3m} \left((P_n \ OK_1) \ OK_1\right) = 3n \end{aligned}$

H. Example 2.8

Lehmer-3 mean number of graph with n=5 is given as $L_{3m}\left(G\right)=3n=3x5=15$

I. Theorem:2.9

- $L_{3m} (P_n \Theta K_{1,2}) = 3n.$
- $\begin{array}{ll} 1) & Proof: Let \ P_n \ be \ a \ path \ of \ n \ vertices \ u_1, u_2, \ldots u_n, \ and \ the \ vertices \ of \ K_{1,2} \ is \ denoted \ as \ v_1, v_2, \ldots v_n, \ w_1, w_2, \ldots w_n \ . \ Define \ a \ function \ f: V(G) \rightarrow \{1,2,\ldots n\} \ by \ f(u_1)=1, \ f(u_i)= \ 3i-1 \ ; \ 2 \leq i \leq n, \ f(v_1)=2, \ f(v_i)= \ 3i \ ; \ 2 \leq i \leq n, \ f(w_1)=3 \ ; \ f(w_i)= \ 3i+1 \ ; \ 2 \leq i \leq n. \ The \ distinct \ edge \ labels \ are \ f(u_i, u_{i+1})=3i+1 \ ; \ 1 \leq i \leq n-1, \ f(u_1v_1)=1, \ f(u_iv_i)= \ 3i-1 \ ; \ 2 \leq i \leq n, \ f(u_1w_1)=2, \ f(u_iw_i)= \ 3i, \ \ 2 \leq i \leq n-1, \ f(u_nw_n)=3n \ Thus \ L_{3m} \ (P_n \ OK_{1,2}) \ = \ 3n \end{array}$

J. Example 2.10

Lehmer-3 mean number of $(P_5 OK_{1,2})$ is $L_{3m} (P_5 OK_{1,2}) = 3n = 3x5 = 15$

K. Theorem :2.11

- $L_{3m}(P_n \Theta K_{1,3}) = 4n.$
- 1) Proof : Let P_n be a path of n vertices $u_1, u_2, \dots u_n$, Let $K_{1,3}$ be a complete graph with vertices v_i, w_i, x_i , such that $1 \le i \le n$ attached to the vertices of the path respectively. Define a function $f:V(G) \rightarrow \{1,2,\dots,n\}$ by $f(u_1)=1$, $f(u_i)=4i-2$; $2 \le i \le n$, $f(v_1)=2$, $f(v_i)=4i-1$; $2 \le i \le n$, $f(w_i)=4n$; $1 \le i \le n$, $f(x_i)=4i+1$; $1 \le i \le n$, Then we obtain distinct edge labels as $f(u_i, u_{i+1})=4i+1$; $1 \le i \le n-1$, $f(u_1v_1)=1$, $f(u_iv_i)=4i-2$; $2 \le i \le n$, $f(u_iw_i)=4i-1$; $1 \le i \le n$, $f(u_ix_i)=4i$, $1 \le i \le n-1$ and $f(u_nx_n)=4n$ Thus L_{3m} ($P_n \ OK_{1,3})=4n$

L. Example 2.12

 L_{3m} (P₆ OK_{1,3}) = 4n = 4x6 = 24 is given below

M. Theorem:2.13

 $L_{3m} \left(P_n \ \Theta K_3 \right) = 4n.$

1) Proof : Let P_n be a path of n vertices and Let $K_{1,3}$ be a complete graph of n vertices attached to each vertices of the path. We define a function $f:V(G) \rightarrow \{1,2,...,n\}$ by $f(u_1)=1$, $f(u_i)=4i-2$; $2 \le i \le n$, $f(v_1)=2$, $f(v_i)=4i-1$; $2 \le i \le n$, $f(w_i)=4i$; $1 \le i \le n$. Then the edge labels as $f(u_i, u_{i+1})=4i+1$; $1 \le i \le n-1$, $f(u_1v_1)=1$, $f(u_iv_i)=4i-2$; $2 \le i \le n$, $f(v_1w_1)=3$; $f(v_iw_i)=4i-1$; $2 \le i \le n$ and $f(u_iw_i)=4i$; $1 \le i \le n-1$ and $f(u_nw_n)=4n$ Hence L_{3m} ($P_n \ \Theta K_3$) = 4n.

N. Example 2.14

Lehmer-3 mean number of $(P_5\ OK_3\,)$ is given below $L_{3m}\,(P_5\ OK_3)=4n=4x5=20$

O. Theorem:2.15

- $L_{3m}\left(P_n \ \Theta K_1\right) \ \Theta K_{1,2}) = 4n$
- 1) Proof : Let $(P_n OK_1) OK_{1,2}$ be a graph with vertices $u_i, v_i, w_i, x_i, ; 1 \le i \le n$, where $P_n OK_1$ be a comb graph in which $K_{1,2}$ is attached to each vertex of the comb. A function defined on G by $f:V(G) \rightarrow \{1,2,...n\}$ by $f(u_1)=1$, $f(u_i)=4i-2$; $2 \le i \le n$, $f(v_i)=2$; $f(v_i)=4i-1$; $2 \le i \le n$, $f(w_i)=4i, 1 \le i \le n$, $f(x_i)=4i+1$; $1 \le i \le n$ then the distinct edge labels are $f(u_i, u_{i+1})=4i+1$; $1 \le i \le n-1$, $f(u_1 v_1)=1$; $f(u_iv_i)=4i-2$; $2 \le i \le n$, $f(v_iw_i)=4i-1$; $1 \le i \le n$, $f(v_ix_i)=4i$; $1 \le i \le n-1$, $f(v_nx_n)=4n$. Thus the Lehmer -3 mean number of $(P_n OK_1) OK_{1,2}$ is 4n

P. Example 2.16

 L_{3m} (P₅ ΘK_1) $\Theta K_{1,2}$) = 4n = 4x5 = 20 is given below

Q. Theorem:2.17

- $L_{3m}\left(C_n \ \Theta K_1\right) = 2n{+}1$
- $\begin{array}{l} 1) \quad Proof: \text{Let } C_n \text{ be a cycle with vertices } u_1, u_2, \ldots u_n, \text{Let } K_1 \text{ be a graph attached to each vertex of the cycle. Such that its vertices be } v_1, v_2, \ldots v_n, \text{Define a function } f:V(G) \rightarrow \{1, 2, \ldots n\} \text{ by } f(u_1) = 1, f(u_i) = 2i ; 2 \leq i \leq n, f(v_i) = 2i + 1, 1 \leq i \leq n. \text{ The edge labels as } f(u_i, u_{i+1}) = 2i + 1; 1 \leq i \leq n-1, f(u_nu_1) = 2n, f(u_iv_i) = 2i ; 1 \leq i \leq n-1, f(u_nv_n) = 2n+1. \text{ Thus } L_{3m} (C_n \odot K_1) = 2n+1 \end{array}$

R. Example 2.18

Lehmer -3 mean number of $C_6 OK_1 = 2n+1 = 2x6+1 = 13$ is given below

S. Theorem :2.19

- $L_{3m}(C_n \Theta K_{1,2}) = 3n+1$
- 1) Proof: Let $C_n \Theta K_{1,2}$ be a graph of n vertices $u_1, u_2, ...u_n, v_1, v_2, ...v_n, w_1, w_2, ...w_n$ respectively. A function defined on $(C_n \Theta K_{1,2})$ as f: $V(C_n \Theta K_{1,2}) \rightarrow \{1,2,...n\}$ by $f(u_1)=1$, $f(u_i)=3i-1$; $2 \le i \le n$, $f(v_i)=3i$, $1 \le i \le n$, $f(w_i)=3i+1$; $1 \le i \le n$. The edge labels as $f(u_i, u_{i+1})=3i+1$; $1 \le i \le n-1$, $f(u_nu_1)=3n-1$, $f(u_iv_i)=3i-1$; $1 \le i \le n-1$, $f(u_iw_i)=3i$; $1 \le i \le n-1$ and $f(u_nw_n)=3n+1n$ Therefore $L_{3m} (C_n \Theta K_{1,2})=3n+1$ Hence the proof

T. Example 2.20

 L_{3m} (C₅ $OK_{1,2}$) = 3n+1 = 3x5+1 = 16 is shown below

U. Theorem :2.21

- $L_{3m} \left(C_n \ \Theta K_1 \right) \Theta K_1 \right) = 3n + 1$
- 1) Proof : Let G be a $(C_n \Theta K_1) \Theta K_1$ graph the vertices be denoted u_i , v_i , w_i , where $1 \le i \le n$ respectively, w_i be the vertices attached t each pendant vertices of the crown. Define a function $f:V(G) \rightarrow \{1,2,...n\}$ by $f(u_1)=1$, $f(u_i)=3i-1$; $2 \le i \le n$, $f(v_i)=3i$; i=1,2...n, $f(w_i)=3i+1$; $1 \le i \le n$. The edge labels are $f(u_i, u_{i+1})=3i+1$; $1 \le i \le n-1$, $f(u_nu_1)=3n-1$; $f(u_iv_i)=3i-1$; $2 \le i \le n-1$, $f(u_nv_n)=3n$, $f(v_iw_i)=3i$; $1 \le i \le n-1$, $f(v_nw_n)=3n+1$. Thus $L_{3m}(G)=3n+1$ hence the proof

V. Example 2.22

 L_{3m} (C₅ Θ K₁) Θ K₁) = 3n+1 = 3x5+1 = 16 diagram pattern is given below

W. Theorem :2.23

- $L_{3m}(C_n \Theta K_1) \Theta K_{1,2} = 4n+1$
- $\begin{array}{l} 1) \quad Proof: \text{Let } G \text{ be a graph of vertices } u_1, u_2, \ldots u_n, v_1, v_2, \ldots v_n, w_1, w_2, \ldots w_n, x_1, x_2, \ldots x_n \text{ respectively. This is a crown attached with } \\ K_{1,2} \text{ at each pendant vertex of a crown. Define a function } f:V(G) \rightarrow \{1,2,3\ldots n\} \text{ by } f(u_1)=1, f(u_i)=4i-2 \ ; \ 2 \leq i \leq n, \ f(v_i)=4i-1 \ ; \ 1 \leq i \leq n, \ f(v_i)=4i+1 \ ; \ 1 \leq i \leq n, \ f(v_i)=4i+1 \ ; \ 1 \leq i \leq n-1, \ f(u_iv_i)=4i-2 \ ; \ 2 \leq i \leq n, \ f(v_i)=4i-1 \ ; \ 1 \leq i \leq n-1, \ f(u_iv_i)=4i-2 \ ; \ f(u_iv_i)=4i-2 \ ;$

X. Example 2.24

Lehmer -3 mean number of $(C_4 \odot K_1) \odot K_{1,2}$ is 4n+1 = 4x4+1 = 16+1 = 17 is given below

Y. Theorem :2.25

- $L_{3m}(L_n) = 3n 1$
- 1) Proof : Let L_n be a ladder graph of n vertices $u_1, u_2, \dots u_n, v_1, v_2, \dots v_n$, respectively. Define a function $f:V(L_n) \rightarrow \{1, 2, \dots n\}$ by $f(u_i)=3i-2$; $1 \le i \le n$, $f(v_i)=3i-1$; $1 \le i \le n$. The edge are labeled as $f(u_iu_{i+1})=3i$; $1 \le i \le n-1$, $f(v_iv_{i+1})=3i+1$; $1 \le i \le n-1$, $f(u_1v_1)=1$, $f(u_iv_i)=3i-1$; $2 \le i \le n-1$, $f(u_nv_n)=3n-1$. Hence $L_{3m}(L_n)=3n-1$. Hence ladder satisfies lehrer -3 mean number

Z. Example 2.26

Lehmer -3 mean number of L7 is given as $L_{3m}(L7) = 3x7-1 = 21-1 = 20$.

AA. Theorem :2.27

 $L_{3m}\left(D_{n}\right)=n+m$

 $\begin{array}{ll} 1) & \textit{Proof}: \text{Let } D_n \text{ be a dragon graph where the head of the dragon has } n \text{ vertices } u_1, u_2, \ldots u_n, \text{ and the path attached to it be } v_1, v_2, \\ \ldots v_m. \text{ Define a function of } f: V(D_n) \rightarrow \{1, 2, \ldots n\} \text{ by } f(u_1 = v_1) = 1, \ f(u_i) = i+1 \ ; \ 2 \leq i \leq n, \ f(v_i) = n+j \ ; \ 2 \leq j \leq m. \end{array}$ The distinct edge labels are $f(u_i u_{i+1}) = i+1 \ ; \ 1 \leq i \leq n, \ f(v_j v_{j+1}) = (n+1)+j \ ; \ 1 \leq j \leq m-2, \ f(v_{n-1} v_n) = n+m. \end{array}$

Thus $L_{3m}(D_n) = n+m$.

BB. Example 2.28

Lehmer -3 mean number of D_n is given below. $L_{3m}(D_n) = m+n$ Hence m=5 and n=6; n+m = 5+6 = 11 is drawn as

CC. Theorem :2.29

Lehmer -3 mean number of caterpillar is 3n

1) Proof : Let G be a graph of n vertices where each vertex of path is attached to pendant vertex on its both side. Let the vertices be denoted as $u_1, u_2, ...u_n, v_1, v_2, ...v_n, w_1, w_2, ...w_n$. Let $f:V(G) \rightarrow \{1,2,...n\}$ be a function defined by $f(u_1) = 1$, $f(u_i) = 3i-1$; $2 \le i \le n$, $f(v_i) = 3i$; $1 \le i \le n$, $f(w_i) = 3i+1$; $1 \le i \le n$ and The edges are labeled as $f(u_iu_{i+1}) = 3i+1$; $1 \le i \le n-1$, $f(u_iv_i) = 3i-1$; $1 \le i \le n$, $f(u_iw_i) = 3i$; $1 \le i \le n-1$, and $f(u_nw_n) = 3n$. hence the Lehmer -3 mean number of a caterpillar is 3n

DD. Example 2.30

Lehmer -3 mean number of a caterpillar of 5 vertices is 3n = 3x5 is given below

REFERENCES

- [1] Harary.F 1988 Graph theory, Narosa Publication House reading, New Delhi
- [2] S Somasundaram and R Ponraj and S S Sandhya 'Harmonic mean labeling of graphs' ommunicated to journal of combinatorial mathematics and combinatorial computing.
- [3] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer-3 Mean Labeling of graphs" "International Journal of Mathematical Forum"
- [4] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer -3 Mean Labeling of Disconnected Graphs" in "Asia Pacific Journal of Research "ISSN 2320-5504, vol:I. issue XL, June 2016.
- [5] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer -3 Mean Labeling of Some New Disconnected Graphs" in "International Journal of Mathematics Trends and Technology "ISSN:2231-5373, vol:35. Number 1, July 2016.
- [6] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer -3 Mean Labeling of Some Disconnected Graphs" in "International Journal of Mathematics Research" ISSN:0976- 5840, vol 8, Number 2(2016).

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)