
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Lehmer-3 Mean Number of Graphs

S. Somasundaram ${ }^{1}$, T.S. Pavithra ${ }^{2}$
${ }^{1}$ Professor in Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012
${ }^{2}$ Research Scholar, Manonmaniam Sundaranar University, Tirunelveli-627012.

I. INTRODUCTION

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are denoted by $V(G)$ and $E(G)$ respectively. A path of length n is denoted by P_{n}. For standerd terminology and notations we follow Harrary[1]. S Somasundaram \& S.S Sandhya introduced the concept of Harmonic Mean Labeling of Graphs in [2].We will provide a brief summary of other information's which are necessary for our present investigation.

A. Definition 1.1

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with P vertices and q edges is called Lehmer -3 mean graph. If it is possible to label vertices $\mathrm{x} \in \mathrm{V}$ with distinct labels $\mathrm{f}(\mathrm{x})$ from $1,2,3, \ldots \ldots \ldots \ldots \mathrm{q}+1$ in such a way that when each edge e=uv is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rceil$ (or) $\left\lfloor\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rfloor$, then the edge labels are distinct. In this case " f " is called Lehmer -3 mean labeling of G .

B. Definition 1.2

Let G be a graph and $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . \mathrm{n}\}$ be a function such that the label of the edge $\mathrm{f}\left(\mathrm{e}=\mathrm{uv}\right.$) is Labeled with $\left\lceil\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right\rceil$ (or) $\left\lfloor\left.\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}} \right\rvert\,\right.$, where $\{(\mathrm{f}(\mathrm{e}) ; \mathrm{e} \mathrm{CE}(\mathrm{G})\} \subseteq\{1,2, \ldots . \mathrm{n}\}$. If n is the smallest positive integer satisfying this condition together with the condition that there is no edges in common. Then n is called the Lehmer-3 mean number of a graph G and is denoted as $L_{3 m}(G)$.

II. MAIN RESULTS

A. Theorem :2.1
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}$.

1) Proof: Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of the path P_{n}. Define a function $f: V\left(P_{n}\right) \rightarrow\{1,2, \ldots n\}$ by $f\left(u_{1}\right)=1, f\left(u_{i}\right)=i+1 ; 2 \leq i \leq n$. Then the edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1} \mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}$. Thus $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}$.

B. Example 2.2

Lehmer-3 mean number of P_{7} is
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}=7$ is given below.

Figure-1
C. Theorem :2.3
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}+1$

1) Proof: Let C_{n} be a cycle of n vertices $u_{1}, u_{2}, \ldots u_{n}, u_{1}$. We define a function $f: V\left(C_{n}\right) \rightarrow\{1,2, \ldots . n\}$ by $f\left(u_{1}\right)=1, f\left(u_{i}\right)=i+1 ; 2 \leq i \leq$ n. Then the distinct edge labels are $f\left(u_{i} u_{i+1}\right)=i+1 ; 1 \leq i \leq n-1, \quad f\left(u_{n} u_{1}\right)=n+1$. Thus $L_{3 m}\left(C_{n}\right)=n+1$.
D. Example 2.4
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{8}\right)=\mathrm{n}+1=8+1=9$ is displayed below.

Figure-2
E. Theorem :2.5
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=2 \mathrm{n}$.

1) Proof: Let Gbe a $P_{n} \odot K_{1}$, graph and its vertices $u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}$. respectively. Let us define a function
$\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1)}=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}\right.$. and the obtained distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right.$, $\left.u_{i+1}\right)=2 i+1 ; 1 \leq i \leq n-1, f\left(u_{i} v_{i}\right)=2 i ; 1 \leq i \leq n-1, f\left(u_{n} v_{n}\right)=2 n$
Hence $L_{3 m}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=2 \mathrm{n}$
F. Example 2.6
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{6} \odot \mathrm{~K}_{1}\right)=2 \mathrm{n}=2 \mathrm{x} 6=12$ is given below

Figure-3
G. Theorem :2.7
$\left.\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1}\right)=3 \mathrm{n}$.

1) Proof: Let G be a graph of n vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \mathrm{w}_{\mathrm{n}}$ respectively. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$. then the distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1$ $\leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}\right)=3 \mathrm{n}$. Therefore $\mathrm{L}_{3 \mathrm{~m}}\left(\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1}\right)=3 \mathrm{n}$
H. Example 2.8

Lehmer- 3 mean number of graph with $n=5$ is given as
$\mathrm{L}_{3 \mathrm{~m}}(\mathrm{G})=3 \mathrm{n}=3 \times 5=15$

Figure-4

I. Theorem:2.9

$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)=3 \mathrm{n}$.

1) Proof: Let P_{n} be a path of n vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}$, and the vertices of $\mathrm{K}_{1,2}$ is denoted as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \mathrm{w}_{\mathrm{n}}$. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{1}\right)=3 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i}+1 ; 2 \leq \mathrm{i} \leq \mathrm{n}$. The distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=1$, $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{u}_{1} \mathrm{w}_{1}\right)=2, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$, $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}\right)=3 \mathrm{n}$ Thus $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)=3 \mathrm{n}$

J. Example 2.10

Lehmer-3 mean number of ($\mathrm{P}_{5} \odot \mathrm{~K}_{1,2}$) is
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{5} \odot \mathrm{~K}_{1,2}\right)=3 \mathrm{n}=3 \times 5=15$

Figure-5

K. Theorem :2.11

$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}\right)=4 \mathrm{n}$.

1) Proof: Let P_{n} be a path of n vertices $u_{1}, u_{2}, \ldots u_{n}$, Let $K_{1,3}$ be a complete graph with vertices v_{i}, w_{i}, x_{i}, such that $1 \leq i \leq n$ attached to the vertices of the path respectively. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{1}\right)=$ $2, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{n} ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$, Then we obtain distinct edge labels as $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}+1 ; 1 \leq$ $\mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)=4 \mathrm{n}$ Thus $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}\right)=$ $4 n$
L. Example 2.12
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{6} \odot \mathrm{~K}_{1,3}\right)=4 \mathrm{n}=4 \times 6=24$ is given below

Figure-6

M. Theorem: 2.13

$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{3}\right)=4 \mathrm{n}$.

1) Proof: Let P_{n} be a path of n vertices and Let $\mathrm{K}_{1,3}$ be a complete graph of n vertices attached to each vertices of the path. We define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$. Then the edge labels as $f\left(u_{i}, u_{i+1}\right)=4 i+1 ; 1 \leq i \leq n-1$, $f\left(u_{1} v_{1}\right)=1$, $f\left(u_{i} v_{i}\right)=4 i-2 ; 2 \leq i \leq n, f\left(v_{1} w_{1}\right)=3 ; f\left(v_{i} w_{i}\right)=4 i-1 ; 2 \leq i \leq n$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}\right)=4 \mathrm{n}$ Hence $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot K_{3}\right)=4 \mathrm{n}$.
N. Example 2.14

Lehmer-3 mean number of $\left(\mathrm{P}_{5} \odot \mathrm{~K}_{3}\right)$ is given below
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{5} \odot \mathrm{~K}_{3}\right)=4 \mathrm{n}=4 \times 5=20$

Figure-7
O. Theorem:2.15
$\left.\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1,2}\right)=4 \mathrm{n}$

1) Proof : Let $\left.\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1,2}\right)$ be a graph with vertices $\mathrm{u}_{\mathrm{i},}, \mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, ; 1 \leq \mathrm{i} \leq \mathrm{n}$, where $\mathrm{P}_{\mathrm{n}} \odot K_{1}$ be a comb graph in which $\mathrm{K}_{1,2}$ is attached to each vertex of the comb. A function defined on G by $f: V(G) \rightarrow\{1,2, \ldots . n\}$ by $f\left(u_{1}\right)=1, f\left(u_{i}\right)=4 i-2 ; 2 \leq i \leq n, f\left(v_{i}\right)=2$; $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}=4 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}\right.$ then the distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{1}\right.$ $\left.\mathrm{v}_{1}\right)=1 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)=4 \mathrm{n}$. Thus the Lehmer -3 mean number of $\left.\left(P_{n} \odot K_{1}\right) \odot K_{1,2}\right)$ is $4 n$

P. Example 2.16

$\left.\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{P}_{5} \odot \mathrm{~K}_{1}\right) \odot \mathrm{K}_{1,2}\right)=4 \mathrm{n}=4 \mathrm{x} 5=20$ is given below

Figure-8
Q. Theorem: 2.17
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}} 0 \mathrm{~K}_{1}\right)=2 \mathrm{n}+1$

1) Proof: Let C_{n} be a cycle with vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}$, Let K_{1} be a graph attached to each vertex of the cycle. Such that its vertices be $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$, Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}\right.$. The edge labels as $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=2 \mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}+1$. Thus $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=2 \mathrm{n}+1$
R. Example 2.18

Lehmer - 3 mean number of $\mathrm{C}_{6} \odot \mathrm{~K}_{1}=2 \mathrm{n}+1=2 \mathrm{x} 6+1=13$ is given below

Figure-9
S. Theorem :2.19
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)=3 \mathrm{n}+1$

1) Proof: Let $C_{n} \odot K_{1,2}$ be a graph of n vertices $u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, w_{1}, w_{2}, . . w_{n}$ respectively. A function defined on $\left(C_{n} \odot K_{1,2}\right)$ as $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \rightarrow\{1,2, \ldots . \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}\right.$. The edge labels as $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right.$, $\left.\mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=3 \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=3 \mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}\right)=3 \mathrm{n}+1 \mathrm{n}$ Therefore $L_{3 m}\left(C_{n} \odot K_{12}\right)=3 n+1$ Hence the proof
T. Example 2.20
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1,2}\right)=3 \mathrm{n}+1=3 \times 5+1=16$ is shown below

Figure-10
U. Theorem :2.21
$\left.\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1}\right)=3 \mathrm{n}+1$

1) Proof: Let G be a $\left.\left(C_{n} \odot K_{1}\right) \odot K_{1}\right)$ graph the vertices be denoted u_{i}, v_{i}, w_{i}, where $1 \leq i \leq n$ respectively, w_{i} be the vertices attached t each pendant vertices of the crown. Define a function $f: V(G) \rightarrow\{1,2, \ldots . n\}$ by $f\left(u_{1)}=1, f\left(u_{i}\right)=3 i-1 ; 2 \leq i \leq n, f\left(v_{i}\right)=3 i\right.$; $i=1,2 \ldots n, f\left(w_{i}\right)=3 i+1 ; 1 \leq i \leq n$, The edge labels are $f\left(u_{i}, u_{i+1}\right)=3 i+1 ; 1 \leq i \leq n-1, f\left(u_{n} u_{1}\right)=3 n-1 ; f\left(u_{i} v_{i}\right)=3 i-1 ; 2 \leq i \leq n-1$, $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=3 \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}\right)=3 \mathrm{n}+1$. Thus $\mathrm{L}_{3 \mathrm{~m}}(\mathrm{G})=3 \mathrm{n}+1$ hence the proof
V. Example 2.22
$\left.\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1}\right) \odot \mathrm{K}_{1}\right)=3 \mathrm{n}+1=3 \times 5+1=16$ diagram pattern is given below

W. Theorem :2.23
$\left.\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1,2}\right)=4 \mathrm{n}+1$
2) Proof: Let G be a graph of vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \mathrm{w}_{\mathrm{n}}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ respectively. This is a crown attached with $\mathrm{K}_{1,2}$ at each pendant vertex of a crown. Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3 \ldots \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 1 \leq$ $\mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$ The distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=4 \mathrm{n}-2 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=$ $4 i-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n}-1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}\right)=4 \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)=4 \mathrm{n}+1$ Thus $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ $\left.\bigcirc \mathrm{K}_{1,2}\right)=4 \mathrm{n}+1$

X. Example 2.24

Lehmer -3 mean number of $\left.\left(C_{4} \odot K_{1}\right) \odot K_{1,2}\right)$ is $4 n+1=4 x 4+1=16+1=17$ is given below

Y. Theorem :2.25
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{~L}_{\mathrm{n}}\right)=3 \mathrm{n}-1$

1) Proof: Let L_{n} be a ladder graph of n vertices $u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}$, respectively. Define a function $f: V\left(L_{n}\right) \rightarrow\{1,2, \ldots . n\}$ by $\mathrm{f}\left(\mathrm{u}_{\mathrm{i})}=3 \mathrm{i}-2 ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}\right.$. The edge are labeled as $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$, $\mathrm{f}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=3 \mathrm{n}-1$. Hence $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{~L}_{\mathrm{n}}\right)=3 \mathrm{n}-1$. Hence ladder satisfies lehmer - 3 mean number

Z. Example 2.26

Lehmer - 3 mean number of L7 is given as $L_{3 m}(L 7)=3 \times 7-1=21-1=20$.

Figure-13

AA. Theorem :2.27
$\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{D}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}$

1) Proof: Let D_{n} be a dragon graph where the head of the dragon has n vertices $u_{1}, u_{2}, \ldots u_{n}$, and the path attached to it be v_{1}, v_{2}, $\ldots v_{m}$. Define a function of $\mathrm{f}: \mathrm{V}\left(\mathrm{D}_{\mathrm{n}}\right) \rightarrow\{1,2, \ldots . \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{u}_{1}=\mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1 ; 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{j} ; 2 \leq \mathrm{j} \leq \mathrm{m}$. The distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}\right)=(\mathrm{n}+1)+\mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{m}-2, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}$.
Thus $\mathrm{L}_{3 \mathrm{~m}}\left(\mathrm{D}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}$.
BB. Example 2.28
Lehmer - 3 mean number of D_{n} is given below. $L_{3 m}\left(D_{n}\right)=m+n$
Hence $m=5$ and $n=6 ; n+m=5+6=11$ is drawn as

Figure-15

CC. Theorem :2.29

Lehmer -3 mean number of caterpillar is $3 n$

1) Proof: Let G be a graph of n vertices where each vertex of path is attached to pendant vertex on its both side. Let the vertices be denoted as $u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, w_{1}, w_{2}, \ldots w_{n}$. Let $f: V(G) \rightarrow\{1,2, \ldots . n\}$ be a function defined by $f\left(u_{1}\right)=1, f\left(u_{i}\right)=3 i-1 ; 2$ $\leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$ and The edges are labeled as $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 1$ $\leq \mathrm{i} \leq \mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)=3 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$, and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{W}_{\mathrm{n}}\right)=3 \mathrm{n}$. hence the Lehmer -3 mean number of a caterpillar is 3 n

DD. Example 2.30
Lehmer -3 mean number of a caterpillar of 5 vertices is $3 n=3 \times 5$ is given below

Figure-16

REFERENCES

[1] Harary.F 1988 Graph theory, Narosa Publication House reading, New Delhi
[2] S Somasundaram and R Ponraj and S S Sandhya 'Harmonic mean labeling of graphs' ommunicated to journal of combinatorial mathematics and combinatorial computing.
[3] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer-3 Mean Labeling of graphs" "International Journal of Mathematical Forum"
[4] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer -3 Mean Labeling of Disconnected Graphs" in "Asia Pacific Journal of Research '’ISSN 23205504 ,vol:I. issue XL, June 2016.
[5] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer -3 Mean Labeling of Some New Disconnected Graphs" in "International Journal of Mathematics Trends and Technology ", ISSN:2231-5373, vol:35. Number 1, July 2016.
[6] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer -3 Mean Labeling of Some Disconnected Graphs" in "International Journal of Mathematics Research'" ISSN:0976-5840, vol 8 ,Number 2(2016).

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

