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Abstract: Forecasting inevitable in any kind of planning and administration. It is an important part of decision making and 
many of our decisions are based on predictions of future unknown events. Statistical planning must be based on forecasts. 
Forecasting has always been necessary and to put forecasting on a scientific basis. This means to forecast by reference to past 
history and statistics rather than by pure intention and guess–work. Forecasting is becoming increasingly important both for the 
regulation of developed economics as well as for the planning of the economic development of underdeveloped countries. In 
formulating policy decisions, it is essential to be able to forecast the value of the economic magnitudes. Such forecasts will 
enable the policy maker to judge whether it is necessary to take any measures in order to influence the relevant economic 
variables. 

I. INTRODUCTION 
The three words ‘prediction, projection and forecast’ have seems to be synonymous, but there were some distinctions. A ‘prediction’ 
is an estimate based only on past data on study variable. It may be considered as pure mechanical extrapolation. A ‘projection’ is a 
prediction where the extrapolated values are subject to certain assumptions. In the demography, where the projection of number of 
births, deaths, marriages etc. involve assumptions about changes in the birth rate, death rates, marriage rate etc., A ‘forecast’ is an 
estimate which relates the series in which one may interested to external factors. Forecasts are thus made by estimating future values 
of the external factors by means of prediction, projection or forecast and from these values, finding the estimates of the dependent 
variable. Hence, forecasting involves using all our knowledge, from all the sources about the situation. The general forecasting 
methods include guessing, thumb rule or informal models; expert judgment; extrapolation; leading indicators; surveys; time series 
models; regression models and economic systems. In the past four decades, a considerable amount of research has been developed 
in the field of forecasting. 

A. Qualitative vs. Quantitative Methods 
Qualitative forecasting techniques are subjective based on the opinion and judgment of consumers, experts; appropriate when past 
data is not available. It is  usually applied to intermediate – long range decisions. 
Example of qualitative forecasting methods : 
1) Informed opinion and judgment. 
2) elphi Method 
3) Market research 
4) Historical life – Cycle analogy. 
5) Quantitative forecasting models  are used to estimate future demands as a function of past data; appropriate when past data is 

available. It is usually applied to short – intermediate range decisions. 

B. Example of quantitative forecasting methods 
Last period demand 
1) Arithmetic Average. 
2) Simple moving average (N- Period) 
3) Weighted moving average (N – Period) 
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4) Simple exponential smoothing 
5) Multiplicative seasonal indexes 

C. ” Naive Approach 
Naive forecasts  are the most cost – effective and effective objective forecasting model, and  provide a benchmark against which 
more sophisticated models can be compared. For stable time series data, this approach says that the forecast for any period equals 
the previous period’s actual value. A naïve forecasting model simply assumes the revenue available at time ‘t’  is the same amount 
available at time ‘t-1’. 
This is also known as the “random walk approach 

 1t tF A
   (1.1) 

where Ft is the forecast at time t, and 
At-1 is the actual value at time (t-1) 
A variation of this involves averaging the two prior periods to generate the estimate. Yet another variation involves adjusting for any 
seasonality that may be present. Naïve forecasting  is often used when the data series  is unpredictable. It is also used in expert 
forecasting  as the starting point for estimates that are then adjusted mentally. 

D. Time Series  Methods 
Time series approach is the “bread and butter” of forecasting. They have been used extensively in the private sector and have been 
subject to substantial evaluation. In using time series techniques, Frank (1993) identifies several essential concepts that need 
consideration prior to the selection of technique.  

II. MOVING AVERAGE 
A moving average is a type of finite impulse response filter used to analyze a set of data points by creating a series of averages of 
different subsets of the full data set. Moving average is commonly used  with time series  data to smooth out  short - term 
fluctuations  and high light  longer – term trends or cycles.As implied by the name, the future value to be forecast is based on the 
average  of N previous periods. It is a moving average because the oldest data points are dropped off as new ones are added. 
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where  Ft is the forecast  at time t, 
   At-i  is the actual value at time  (t-i), 
and  N is the number of time periods averaged. 

III. SINGLE MOVING AVERAGE 
The most commonly used forecasting moving  average model is Single Moving Average Model.The moving average forecast is 
based on the assumption of a constant model. 

 t tX b  
       (3.1) 

Estimate the Single Parameter of the model at time T as average of the last m observations, where m is the moving average interval. 
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       (3.2) 
Since the model assumes a constant underlying mean, the forecast  for any number of periods in the future is the same as the 
estimate of the parameter. 
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ˆˆ 1, 2,......tx b for         (3.3) 

For a continuously increasing series with trend a, the values of lag and bias of the estimator of the mean is given in the equations 
below. 

  Lag=  
  


m 1 a(m 1), Bias ...

2 2     
(3.4) 

The moving average forecast of  periods into the future is represented by shifting the curves to the right.The lag and bias increase 
proportionally. The equations below indicate the lag and bias of a forecast    periods into the future when compared to the model 
parameters. 
Again, these formulas are for a time series with a constant linear trend. 
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    (3.5) 
The error is the difference between the actual data and the forecasted value. 
If the time series is truly a constant value the expected value of the error is zero and the variance of the error is comprised of a term 
that is a function of   and a second term that is the variance of the noise  ,2. 
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A. Double Moving Average Forecasting Model 
The Double Moving Average forecasting model (or 2nd moving averages of the 1st order moving averages) gives unequally 
weighted averages, and intended to handle data series with  trend better than the Single Moving Averages.Double Moving Average 
can be denoted as MA (MxN)  which Means an M- period MA of an N – Period  of MA . 
The Double Moving Averages for available  averaging periods  using the following equation: 

, , , 1 , 12 1 1 ..... 1nt nt nt nt nM M M M     
    (3.9) 

where  M2n,t =  An n–period double moving average calculated in period t. 
M1 n,t = An   n -  Period single moving average calculated in period t. 
and     n =  Number of periods in the moving average. 
For developing a forecast, we can use the Double Moving Average as 

, , , ,2nt t h nt ntFM A B h   
    (3.10) 

Where 
 FM2n,t,t+h  = The n – period, double moving average  
 Forecast made in period t for period t+h , 
 An,t= The  intercept for an  n–period double moving average forecast,       calculated : 
 An,t  =  2M1n,t  -M2n,t 
 Bn,t  =  The slope for an  n – period double moving average forecast,       calculated :  
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Where h  =  The horizon, the number  of periods used for forecasting into the future.     

B. Cumulative Moving Average 
In a cumulative moving average, the data arrives in an ordered data stream and getting the average of all the data   up until the 
current data point. As each new transaction occurs, the average at the time of the transaction can be calculated for all of the 
transactions up to that  point using  the cumulative average, typically an unweighted average of the sequence of i values 

1 2, ,....., ix x x   up to the current time. 
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The brute – force method to calculate this would be to store all of the data and calculate the sum and divide by a number of data 
points every time a new data point arrived. 
However, it is possible to simply update cumulative average as a new  value Xi+1 becomes available, using the formula: 
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Where CAo can be taken to be equal to zero. 
When  all of the data points arrive (i=N), the cumulative average will equal the final average. 
The derivation of the cumulative average formula  is straight forward. 

Using  1 2 ..... i ix x x iCA   
 , 

and similarly for i+1,  it is seen that  
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Solving this equation for CAi+1 results in: 

CAi+1  =
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1 1
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C. Weighted Moving Average 
A weighted average  is any average that has multiplying factors to give different weights to data at different positions in the sample 
window. Mathematically, the moving average is the convolution  of the data points with a fixed weighting function. A weighted 
Moving Average (WMA) has the specific meaning of weights that decrease in Arithmetical Progression. In an n – day WMA the 
latest day has weight n, the second latest  n-1, etc., down to one. 

WMAM =

1 ( 2) ( 1)( 1) .... 2
( 1) .... 2 1

M M M n M nnP n P P P
n n

        

        (3.15) 

The denominator is a triangle number equal  2
)1( nn

 
When calculating the WMA across successive values, the difference between the numerators of WMAM+1 and WMAM is 

1 1.......M M M nnp p p     . 

If we denote the sum 1.......M M np p      by total M,  then 
Total M+1= TotalM + PM+1 -  PM-n+1 
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Numerator M+1=   NumeratorM + nPM+1 - TotalM 

WMAM+1 =  
12....)1(

1




nn
NumeratorM

     (3.16) 
D. Exponential Moving Average 
An Exponential Moving Average (EMA), also known as an Exponentially Weighted  Moving Average (EWMA), is a type of  
infinite impulse response filter that applies weighting factors  which decrease exponentially. The weighting for each order data point  
decreases exponentially, never reaching zero. 
The EMA for a series  y may be calculated recursively: 
 S1   =   Y1 
 For  t>  1, St  =   x Yt-1 + (1 - ) x St-1     (3.17) 
where the co-efficient   represents the degree of weighting decrease, 
 Yt  is the  observation at a time period t, 
 St is the value of the EMA at any time period  t. 

E. Modified Moving Average 
A modified Moving Average (MMA), running Moving Average (RMA), or Smoothed Moving Average is defined as : 

 MMA today = 

( 1) PryesterdayN x MMA ice
N

 

   (3.18) 
 In short, this is exponential moving average, with  = 1/N 

IV. EXPONENTIAL SMOOTHING 
Exponential smoothing is a technique  that can be applied to time series data, either to produce smoothed data for presentation, or to 
make forecasts. The raw data sequence is often represented by Xt, and the output of the exponential smoothing algorithm is 
commonly written as  St, which may be regarded as a best estimate of what the next  value of X will be. When the sequence  of 
observations begins at time t = o, the simplest form of exponential smoothing is given by the formulas: 

 

1 0

t t-1 t-1

S  =  x
S  =  x + (1-  ) S   ,   t  > 1 





  (4.1 ) 

where is the smoothing factor  , and 0 << 1 . 

A. Double Exponential Smoothing 
Simple exponential smoothing does  not do well when there is a trend in the data. In such situations, a method was devised under the 
name “Double Exponential Smoothing”. One method, some timesreffered to as “Holt winters double exponential smoothing”, works 
as follows: The raw data sequence of observations is represented by Xt, beginning at time  t = 0.St is to represent  the smoothed  
value for time t, and bt is the best  estimate of the trend at time t. Double exponential smoothing is given by the formulas. 
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b =  (S  - S ) + (1-  ) b
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 



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t+m t tF =  S + mb  
where is the data  smoothing factor, 0<<1 
 is the trend smoothing factor, 0 <<1. 
 and     b0 is taken as (Xn-1 – X0) / (n-1) for some n>1. 
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Note that Fo is undefined (there is no estimation for time 0), and according to the definition F1 = So+bo, which is well defined, thus 
further values can be evaluated. A second method, reffered to as either Brown’s Linear Exponential Smoothing (LES) or Brown’s 
double exponential smoothing work as follows: 
 So1    = xo 
 So11    = xo 
 St1 =          xt+  (1-) S1t-1                                     (4.3 ) 
            St11        =         St1 +  (1-) S11t-1 
 Ft+m = at  +mbt 
Where at, the estimated level at time t, and  
 bt   ,  the estimated trend at time t are : 

 at    = 2St1  - 
11

tS  

 bt      = 

1 11( )
1 t tS S




  

B. Riple Exponential Smoothing 
Triple exponential smoothing takes into account seasonal changes as well as trends. It was first suggested by Holt’s Student Peter 
winters, in 1960.Triple exponential smoothing is given by the formulas: 
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The output of the algorithm is written as Ft+m , an estimate  of the value of X at time t+m, m>o based  on the raw data up to time t. 

    t+m t t modF =  S + mb ,t m LC      (4.5) 
where is the data  smoothing  factor, 0<<1 
 is the trend smoothing factor, 0<<1 
and is the seasonal change smoothing factor 0<<1. 
 

V. CONCLUSIONS 
Forecasting techniques that are based on regression analysis are substantially different in their underlying concepts and theory from 
the techniques of time series analysis, smoothing and decomposition. Regression techniques are generally referred to as causal or 
explanatory approaches to forecasting. They attempt to predict the future by discovering and measuring the effect of important 
independent variables on the dependent variable to be forecast. Because of their costs, these methods are generally used in long-run 
planning and in situations where the value of increased accuracy warrants the additional expense. In this paper we discuss about  
various basic forecasting models such as Naive, Moving averages, Simple smoothing, Double moving averages and Double 
smoothing, triple smoothing and adaptive smoothing forecasting models. 
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