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Abstract: In the non-experimental sciences, much of the data used is passively generated. The lack of sufficient information and 
the ambiguity of statistical results based on information leads to commonly called the multicollinearity problem. 
Multicollinearity, unfortunately, contributes to difficulty in the specification as well as the estimation of economic relationships. 
Attempts to apply regression techniques to highly multicollinear independent variables result in parameter estimates that are 
markedly sensitive to changes in model specification and to sample coverage. Econometricians recognize that multicollinearity 
imports a substantial bias toward incorrect model specification, and that poor specification undermines the “best linear 
unbiased” character of parameter estimates over multicollinear independent variable sets. 

I. INTRODUCTION 
Multicollinearity may have several adverse effects on estimated coefficients in a multiple regression analysis. Consequently it is 
important that researchers be trained in detecting its presence. Examination of a data for the existence of multicollinearity should 
always be performed as an initial step in any multiple regression analysis. The statisticians and researchers of many disciplines that 
employ regression analysis should be aware of the adverse effects of multicollinearity and that may exist in the defection of linear 
dependencies.  

 
A. Detection  
Let C denote the correlation matrix  for k regressor variables.  Let lj be the jth  latent  root of C with corresponding  latent vector vj. 
Let the matrix of latent vectors be  

    1 2[ , . . .. . .. . ]kV v v v  

The degree of multicollinearity among  the regressor  variables  is often determined by using  one or more of the following  
measures  

1) Extreme pair wise correlation  two regressor variables  

1
max

max , ijr C whereC VLV .Small  determinant of the  correlation  matrix where 
1


k

j
j

C l  

2) One or  more small latent roots of the correlation matrix.  If  lj=0,  then  an exact linear dependence exists.  
3) Large variance inflation factors, VIF(j), are  the diagonal elements of the inverse of the correlation matrix, that is, 

1 1 1 1( ) ,   ijVIF j C C vL v  

4) Large 2
jR , where xi is predicted using the reaming regressor variables;  

 2 21 ( ) ( ) 1 1/    j jR VIF j or tolerance j R VIF j  

Consider a KxK correlation matrix of the from  

   (1 )  C I J   
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where  I is identity matrix of order K and J is a square matrix  of order n with every element equal to –1/k-1<p< 1.0 

Graybill (1969), has inverse 1 1
1 1 ( 1)

  
     

C I J
k


  ,
consequently, the VIF for the jth regressor variable 

( ) [1 ( 2) ]/[(1 )(1 ( 1) )]     VIF j K k    

The  determinant of C is 1[1 ( 1) ](1 )     kC k    

Linear relationships among regressor variables are best detected by examination of the latent roots and latent vectors of the 
correlation matrix. For orthogonal data each latent root has a value of 1.0 In general, multicollinearity is a problem when one or 
more of the latent roots are near zero. The latest vectors corresponding  to small latent roots  indicate how the standardized regressor 
variables are involved in the linear dependencies. A large value within a latent vector signifies that the corresponding regressor 
variable is contributing to the multicollinearity problem. The major problem with multicollinearity is that the least squares 
estimators of coefficients of variables involved in the linear dependencies have large variances. The VIF is an indicator that 

provides the user with a measure of how many times larger the var ˆ( )j  will be for multicollinear data than for orthogonal data 

advantage of knowing the VIF for each variable is that it gives users a tangible feel of how much the variances of estimated 
coefficients are affected by the multicollinearity. Hence, one is able to determine  how strongly a vaiable, if added to those regressor 
variables already in the model, will be linearly  related to those variables. Examination of the latent roots and latent vectors of the  
correlation matrix provides the  user with a necessary and a sufficient  measure of detecting multicollinearity.  

B. Multicollinearity And The Mean Square Error 
The problem of multicollinearity in regression analysis is essentially a lack of sufficient information in the sample to permit accurate 
estimation of the individual parameters. More specifically, 

Let    Y X Z u   
Where X and Z are non stochastic, each variable has mean zero, and u is a serially independent random disturbance with mean zero 
and constant variance. The equation is first estimated by ordinary least squares. In the coefficient of the “nuisance” variable (z) has a 
low t statistic, the equation is re-estimated with z omitted; if not, the original ordinary least squares (OLS) estimate is retained. 
Bancroft concentrated on deriving estimates of the bias when  does not equal zero but did not calculate the MSE of the estimate of 
. Toro Vizcarrondo and wallace suggest that to test the null hypothesis that the true t   is less than one and, if the null hypothesis is 

not rejected, omit the collinear nuisance variable. Since this null hypothesis is tested by using the sample t   statistic, their 

procedure differs from that Bancroft only in the critical level of the sample t  required to omit z. A variety of mean square error 

loss functions is presented to indicate the potential gains and losses of different COV estimators. Each COV estimator is defined by 
an essentially arbitrary test statistic for choosing in any sample between the OLS estimator and an unconditional omitted variable 
(OV) estimator. 

II. THE LOSS FUNCTIONS OF COV ESTIMATORS 
Consider the basic model 

,  t t t tY X Z u   (t=1, 2 ….T) 

E (ut) = E (utut-s) = 0 and  2 2
tE u  ,      …. (3.1) 

where X and z are nonstochastic variables with mean zero. The conditional omitted variable estimator with parameter  is defined 
by 

ˆ ˆ
[cov( )]

ˆ ˆ

  


if t

b if t




 
 


      …. (3.2) 
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where ̂   is the OLS  estimator of  in equation (3.2) r̂t   is the ratio of r̂  to its sample standard error and b̂ is the (OV) estimator 

of  i.e; the OLS estimator of b in the omitted variable equation. 
  t t tY bX v          …. (3.3)]] 

The ratio at the mean square errors of the OV and OLS estimators provides insight into the potential gains and losses of using a 
COV estimator. The mean square error of the OV estimator is 

 2 2 1 1 1 2 1 2 2ˆ ˆ( ) ( ) ( ) ( ) ( )    MSE b E b x x x x x z      ……(3.4) 
The mean square error of the OLS estimator is  

2 2 1 1 1 1 2 1ˆ ˆ( ) ( ) ( ) [ ( ) ( ) ( ) ]   MSE E z z X X z z X z      .…. (3.5) 
The ratio of (3.4) to (3.5) simplifies to  

     …. (3.6) 
where rxz is the correlation between x and z, and t   is the absolute value of the ratio of  to its true standard error i.e; 

2 1 1 1 1 1( ) ( ) ( ) XZr X z X X z z  and 2 2 1 1 1 2[ ( ) ( ) ( ) ] t X X z z X z  2 1( )X X . 

Equation (3.6) shows that if the regressors are correlated  2 0xzr , the omitted variable estimator has a smaller mean square error 

than the OLS estimator whenever 2 1t   and a larger mean square error whenever 2 1t  .    

    
III. FARRAR AND GLAUBER TEST 

Farrar and Glauber (1967) used three test statistics Viz, 2 , F and t  for testing the multicollinearity in the given data. 2  
test is used for the detection of the existence and severity of multicollinearity in a function including several explanatory variables. 
F-test is used for the location of multicollinearity that is which variables are multicollinear.t-test is used for the pattern of 
multicollinearity that is which variables are responsible for the appearance of multicollinear variables. Since multicollinearity 
is a departure from orthogonality we state the null hypothesis as 

  1:oH X s  are Orthogonal  

  i.e, there is no multicollinearity 

  1 0 0   
i jX XX X or r i j  

where     is the determinant of correlation matrix i.e.,  

i.e.,  1X X  = 

12 13 1

21 23 2

1 2 3

1 . . . .
1 . . . .

. . .

. . .

. . .
. . . . 1

k

k

k k k

r r r
r r r

r r r

 
 
 
 
 
 
 
 
  

     …. (4.1) 

In case of perfect multicollinearity 1X X = 0.On the other side in the case of orthogonal 1 1X X
.
Since 0xixjr  ; 

1,2, ......... i j  

If the value of 1X X   lies between 0 and 1 there exists some degree of multicollinearity. For detecting the degree of 

multicollinearity over the whole set of explanatory variables “Farrar and Glauber” suggest the following 2  test. 

To test the Ho, 2 test  statistic  is given by  
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   1
2

2 1 22 5( 1) ( ) log1 1
6 

      
� K K

kX n X X     …… (4.2) 

when    n= number of  observations 
  K= number  of explanatory  variables 
   X1X= correlation matrix  

Compare 2 calculated value with 2  central value. If   1
2

2 2
 k kcal   we reject Ho. Otherwise accept HO. If  we accept  Ho, 

then we say that there is no significant multicollinearity in the  function. The higher value of 2  calculated  indicates the  more 
severe  multicollinearity. 
 

IV. F – TEST 
To locate the variables which are multicollinearity Farrar and Glauber computed the  coefficients of  multiple determination among 
the explanatory variables in the model. Let Ri

2 denotes the coefficient of Multiple determination of ith explanatory variable regressed 
on the remaining (K-1) explanatory variables.  To test the significance of Ri

2, we use the Fi statistic. The Fi statistic is given by 

   
 

    

2

1,2

/ 1
1  




 
�i

i k n k
i

R k
F F

R n k
    …… (5.1) 

Where n  number of observations 

k  number of explanatory variables  

If Fi cal  F(k-1, n-k), we accept Ho. Then we can infer that variable Xi is not multicollinear. If we reject H0, then Fi is significant, we 
say that the ith explanatory variable Xi is most affected by multicollinearity. 
 

V. T-TEST 
This test helps to detect the variables which are responsible for multicollinearity. We compute the partial correlation coefficients 
among explanatory variables and then test for their significance by the student t- test.  

    
i j 1 2 kx x .x x ....xHo: r 0  

 i e; Xi and Xj  are not multicollinear  
The t-test statistic for the significance of partial correlation coefficient between Xi and Xj; ij is given by  

 1 2

1 2

.

2
.

; 1,2,...
1

 




  


�k

k

XiXj X X X n k
n k

XiXj X X X

r
t t i j k

r
    ……(6.1) 

 
where         n = number  of observations 
  k= number of explanatory variables 
If  t cal  t cri value we accept Ho. Then  we  infer that  variables Xi and Xj are  not responsible  for the multicollinearity. Otherwise  
we reject Ho, so t  is significant, then we say that the variable Xi and  Xj are responsible for  the  multicollinearity in the function.  
 

VI. SIMPLE  CORRELATIONS AMONG REGRESSORS 
The detection of multicollinearity by Farrar and Glauber (1967), actually involves three aspects I) determining its presence, 2) its  
severity and 3) its  location or form in a set of data. Some commonly suggested detection measures and procedures are appraised.  A 
commonly quoted rule is that if a simple descriptive measure in the form of a correlation coefficient between two regressors is 
greater than 0.8 or 0.9, then multicollinearity is a serious problem. A more elaboration version of this rule compares the simple 
correlation coefficients to R2, the coefficient of determination; multicollinearity is deemed harmful if the simple correlation is 
greater than R2. An intuitive explanation of this rule is given by Farrar and Glauber (1967). Unfortunately, the only certain 
information simple correlations can provide occurs when one of them is unity. Then the observation matrix will be singular and 
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unbiased,  least squares estimates are not available  for all parametric functions. Furthermore, it is clear that if a linear dependency 
involves  more than  two  regressors, pair wise  sample correlation coefficients  provide  no information about them.  
 

VII. CONCLUSIONS 
Smith (1974) points out, by appropriate model transformation and scaling it is always possible to produce a model whose variables 
are orthogonal and whose characteristic roots are unity. If several near-exact linear dependencies are present do not provide a 
complete solution to the problem of detecting and identifying structural relations associated with poor implicit sample design. 
Belsley, Kuh and Welsh (1980) provide a set of condition indexes that identify one or more near dependencies.  Furthermore they 
adopt the silvery regression variance decomposition so that it can used with the indexes to isolate the variables involved and to 
assess the extent of distortion due to the near dependencies. In this present paper we discuss about various hypothetical tests 
involved in Multicollinearity problem in criteria for model selection. 
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