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Abstract: Model means a set of relationships between two or more variables. These relationships can be expressed in terms of 
mathematical equations. A set of mathematical equations concerns with the economic variables is called a mathematical 
economic model.  By introducing an error random variable, the mathematical economic model becomes an econometric model. 
Econometric model may be either in the form of a set of linear equations (linear regression model) or in the form of a set of 
nonlinear equations (Nonlinear regression model). If the curve of the regression is not a straight line, then the regression is said 
to the nonlinear regression. In this case, the nonlinear regression equation involves the terms as higher order of the type X2, X3 

and so on. 

I. INTRODUCTION 
A nonlinear regression model refers to a model having a regression function which is nonlinear either in the explanatory variables or 
in the unknown regression coefficients or in both explanatory variables and regression coefficients. 
Nonlinear regression models can be broadly divided into two parts: 
Nonlinear models which are linear in parameters but nonlinear in independent variables. 
And Nonlinear models which are nonlinear in parameters. 

A. Nonlinear Models which are Linear in Parameters 
A general form of nonlinear regression model which is linear in parameters is given by 
Yi = 0 + 1Zli + 2 Z2i+ .  .., + pZpi + i    
i = 1,2,..., n...  (1) Where Zirefers to any function of the basic independent variables X1, X2,...,Xk.  
 
B. Nonlinear Models which are Nonlinear in Parameters 
Any model which is not in the form (1) is called a nonlinear regression model, which is nonlinear in the parameters. These models 
are again two types : 
Nonlinear regression models that are intrinsically linear; 
and Nonlinear models that are intrinsically nonlinear. 
A nonlinear model which can be expressed in the form (1) by suitable transformation of the variables is called nonlinear model that 
is intrinsically linear. 
A nonlinear model which can not be expressed in the form (1) by any transformation, is called nonlinear model that is intrinsically 
nonlinear. 
In the case of intrinsically linear models, the OLS estimation can be applied to the transformed models and the optimal estimators 
can be obtained for the parameters of the models. 
In the case of intrinsically nonlinear models, OLS estimation fails to give the estimates of the parameters. However, the OLS 
estimation can be applied under iterative process to estimate the parameters of the models. 
The inferential properties of estimators for the parameters in the nonlinear regression models are usually derived by using linear 
approximations in one form or another form. Therefore, in general, all the problems arising for linear models are also appear when 
dealing with nonlinear specifications. Moreover, for nonlinear regression models, the properties of estimators and test statistics can 
only be derived approximately or asymptotically. Little is known about the small sample properties. 
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II. NONLINEAR METHODS OF ESTIMATION 
A few estimation methods are available for the estimation of parameters of the nonlinear statistical models. 

A. Nonlinear Least Squares Estimation 
Consider a nonlinear regression model is of the form 
Yi = f(X1i, X2i, …, Xki; 1, 2, …, p) + i  
   i = 1, 2, …, n.    … (2.1.1) 
Where  Y is Dependent variable; 
 X1, X2, …,Xk are k-independent variables; 
 1, 2, …,p are p-parameters; 
 is error variable; 
 n is number of observations on each variable;  
and    f(.) is the known nonlinear functional form. 
By writing 
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the nonlinear regression model can be expressed in the matrix form as 
    Y = f(X, ) +      … (2.1.2) 
Where, Y is (nx1);  f(X, ) is (nx1); X is (nxk); 
  is (px1) and  is (nx1) matrices. 
Assume that the errors are i.i.d’s with ~(0,2I), but the exact form of the distribution is unknown. 
Define the residual sum of squares as 

   R  ̂  =   | )ˆ f(X, -Y   )ˆ f(X, -Y      … (2.1.3) 

The nonlinear least squares estimator ̂  of  can be obtained by  minimizing R  ̂  with respect to ̂  and then solve the 

nonlinear normal equations for ̂ . 

 By writing R  ̂  as  
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R  ̂  = 


n

i 1
 2ii )ˆ ,f(X -Y   , where Xi is ith  k-dimensional observation on k-independent variables. 

 
The p-nonlinear normal equations are given by 
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Since, f(Xi, ) is nonlinear in ’s, the normal equations will be nonlinear both in X’s and ’s. In general, ̂  will not be linear 
function of Y and optimality properties may not be derived for the nonlinear least squares estimators. 
In practice, it is difficult to solve the nonlinear normal equations.  In this case, generally one may use iterative methods to obtain the 

estimators for the parameters. Under certain regularity conditions the Least Squares Estimator ̂  will be consistent and 
asymptotically normally distributed. A reasonable estimator for 2 is given by 

   2̂  = 
kn

R


)ˆ(
. 

 
B. Taylor Series Expansion Method or Linear Approximation Method 
Consider the nonlinear regression model in the matrix form as 
   Ynx1 = fnx1 (Xnxk, px1) + nx1     … (2.1.5) 

Such that iid
~  (0, 2 In)  

Using Taylor series expansion and neglecting the terms from second order derivatives, the nonlinear function f(X,) may be 
approximated at  = * by a linear function as follows : 
 f(X,) ~ f(X, 
or  f(X,) ~ f(X,*) + Z(*)(-*) 
 

Where   Z(*) = 
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or  Y = f(X,*) + Z (*) (-*) +   
  Y* = Z (*)  +        … (2.1.6) 
Where Y* ~ Y – f(X,*) + Z(*) * 

Since, (2.1.5) and (2.1.6) are identical for =*, a consistent estimator NL̂ , say for * in (2.1.5) will almost surely coincide with 

a corresponding consistent estimator LS̂ , say for * in (2.1.6) in the limit, and thus these properties of NL̂  and LS̂  will be 

similar at least in large samples. 

Model (2.1.6) is called the `Linear Pseudomodel’ by Malinvaud (1970). The least squares estimator LS̂  for  is given by 

  LS̂  = [Z(*)
|
Z(*)]

-|
[Z(*)

|
Y*]     … (2.1.7) 

Assume that  has the covariance matrix  = 2* In, then the variance covariance matrix of the least squares estimator LS̂  as 

 LS  = 2*  [Z(*)
|
Z(*)]

-| 
      … (2.1.8) 
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Consequently, the covariance of NL̂  is approximately 

  
NL̂ = 2*  [Z(*)

|
Z(*)]

-| 
 in large samples. 

Also, an estimate of 2*  is given by 
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The matrix [Z (*)
|
 Z (*) ]

-|
 is accordingly approximated 

by   Ĉ  =   |*|* )(ˆ )(ˆ 
 ZZ  =   ijĈ     (2.1.12) 

 
To test the hypothesis, H0 :i = io, the test statistic is given by 
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C. Maximum Likelihood Method of Estimation 
The method of maximum likelihood estimation can be applied to nonlinear models. If the observations are independent, under 
certain regularity conditions, the maximum likelihood estimators have some optimum properties. 
Consider the nonlinear model as  Y = f(X,) +    (2.1.14) 
Where  is assumed to follow N [0, ] 
Here,  is the variance  - covariance matrix of . 
Write the likelihood function of the observation vector Y as 
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The maximum likelihood estimators of  and  can be obtained by maximising ln L(, ) or minimising - ln L(, ) with respect to 
 and . 

Let   L* = - ln L   ˆ ,ˆ  
Assuming that   = 2 In    .  Then 

ln L = 
2
n
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2ˆ2
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            (2.1.18) 

Minimisation of L* is equivalent to the minimisation of the residual sum of squares [Y – f(X, ̂ )]
|
 [Y – f(X, ̂ )] with respect to 

̂ . 

Thus, the maximum likelihood estimator of  say ML̂ equals to the OLS estimator of   say OLS̂ .     i.e ., ML̂ = OLS̂  

Also, the maximum likelihood estimator of 2 is given by 

 2ˆ ML  = 
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n
XfYXfY MLML  ˆ,  ˆ,
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   (2.1.19) 

 
Under certain regularity conditions, the maximum likelihood estimators are consistent, sufficient, asymptotically efficient and 
follow asymptotic normal distribution. 
 
D. Newton – Raphson Method 
Suppose L() be the likelihood function which has continuous first and second derivatives with respect to the vector  of  p– 
elements. To maximize L(), one may consider the first order condition as 
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At any point , the gradient or vector of first derivatives L
|
 () provides much information concerning where one should move to 

reach a maximum. Many algorithms to maximize L() are based on the gradient L
|
() and are called ‘Gradient Algorithms’. 

An algorithm specifies how one should move from a point (0) to the next point (1).  A gradient algorithm takes the form 

   (1) = (0) + K0 H0 L
|
 ((0))     (2.1.21) 

Where  L
|
 ((0)) is the gradient evaluated at (0);  

K0 is a scalar;  
H0 is a matrix to be specified;  
K0 gives the stepwise size;  

and H0 L
|
((0)) is the search direction. 

The Newton – Raphson method specifies 
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Where,  L
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If L
|
 ()  is linear [or L() is quadratic], the Newton – Rapshon method, using  K=1 converges in one iteration; 

i.e., starting from any (0),  
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gives the maximum of L(). If L() is not quadratic, one can choose the step size K0 different from 1.  The method of choosing K in 
connection with the Newton – Raphson method has been suggested by Chow (1968) and Chow and Fair (1973). 
 
E. Steepest Descent / Steepest Ascent Method 
The method of steepest Descent or steepest Ascent specifies H0=I, one way to choose the step size K0 is to approximate L() by a 
quadratic function and find K0 to maximize L((1)). 
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By substituting K L
|
((0)) for ((1) - (0)) 

one may write (2.1.24) as 
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Minimization of (2.1.25) with respect to K gives 
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This K0 may be expensive to compute, since it requires the matrix  





 )0(|L
of second patial derivations of  L() with respect to . 

Although this method is very simple, it may not be used in many cases because, it may converge slowly. However this method can 
be valuable if it is combined with other algorithms such as Gauss-Newton methods etc. 
 
F. Gauss – Newton Method 
It is an approximation to the Newton – Raphson method in that when the matrix of second derivatives of L is computed, the second 
derivatives of the function f(X, ) specifying the nonlinear model are ignored. 
Consider the nonlinear model 
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Y = f(X, ) +  and the objective function is of the form 

 R() = [Y  f(X,)]
|
 [ Y  f(X,)]      (2.1.27) 

With  = ((wij)) for  i,j = 1, 2, …, n. 
The Hession of R() is 
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However, since the mean of i = Yi  - f(Xi, *) is assumed to be zero, these error terms should be small, at least close to the 
minimum of R() if the variance is small. Thus, the first term on the R.H.S. of (2.1.28) is taken as an approximation of H(). 
Consequently,  
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By this method, one can have, 
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The least squares estimator for the model 
  Y – f(X, n) + Z(n) n = Z(n)  +      (2.1.32) 
Which is the linear Pseudo model at n. This shows that the Gauss algorithm can be viewed as a sequence of linear regressions. In 
each step, one may compute the least squares estimator for a linear approximation of the nonlinear model. 

G. Method Of Scoring 
It is another variation of the Newton-Raphson method applied to compute the maximum likelihood estimates for the parameters. 

Consider the necessary condition that log L() is maximum at  = ̂ , as  
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In large samples, by substituting I(0) for 






















20

2 )(L log  



 and thus, one may get 





 )(L log ~ S(0) - ( - 0)  I(0) 

 





 )(L log 
= 0  S(0) - ( - 0)  I(0) = 0 

  = 0 + 
)(

)(
0

0





I

S
        (2.1.35) 

Equation (2.1.35) is an important relation for Iterative process starting from  


|
 = 0 + 

)(

)(
0

0





I

S
         (2.1.36) 

In the matrix notation, one can write  

    
|
 = 0 + [I(0)]

|
 S(0)     (2.1.37) 

 

Where I(0) = - E
0|

2
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
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


 

 
At the second iteration, one can have 

   2 = 
|
 + [I(

|
)]
|

 S(
|
)     (2.1.38) 

 
Iteration process will be proceeded till the convergence. 
H. Quadratic Hill – Climbing Method 
This method was proposed by Goldfeld, Quandt and Trotter (1966) which is another modification of the Newton – Raphson method. 

When 0 is far from the maximizing value, the matrix 
01

1 )(L 




















 of second partial derivatives may not be negative 

definite. Taking a small step in the Newton – Raphson direction may lead one downhill rather than uphill. To ensure the negative 
definiteness of – H0 the method of Quadratic hill climbing uses for - H0 in the gradient algorithm. 

   
1
   = 0 + K0H0  L

|
(0) as 

    H0= 

|

|

0|
 )(L 


















 I



     (2.1.39) 
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Where the scalar  is chosen to maximize L() is a spherical region centered at 0, that is bounded by ( - 0)
|
  ( - 0) = r, under 

the assumption that L() is quadratic in that region. This method requires computing the characteristic roots of the matrix 
















|

0| )(L 




. 

 
J. Conjugate Gradient Method 
This algorithm was suggested by Flatcher and Reeves (1964). It does not require the use of first derivatives. It evaluates the function 
L() to be maximized along mutually conjugate directions, beginning at a point 0. For a quadratic function, 

L() = 
|
 A  + 

|
 + c, two direction vectors d1 and  d2 are conjugate if  |

1d  A d2 = 0. When A = Im, the ‘m’ columns of the identity 

matrix Im are conjugate direction vectors. Let 0
1d , 0

2d , …, 0
md  be m linearly independent direction vectors. Starting from 0, 

one can search along the directions 0
id , (i=1, 2, …, m)  sequentially, each time going along one direction 0

id . One begins by 

searching along 0
1d , that is, by choosing a scalar 1, to 

  
.

1
Max
 L(0 + 1

0
1d ) . 

Having chosen 1̂ , one chooses a scalar 2 to 

.
2

Max
 L(0 + 1̂

0
1d 2

0
2d ) 

 and so forth. 
Having searched along all m directions,  

let,  0̂  = 0 + 


m

i
i

1
̂ 0

id 0 +  . 

The following step is to Max. L( 0̂  + K ) and set 
|
 = 0̂  + K . 

To start with, let 0
id be the coordinate directions, ie., the m column vectors of the identity matrix Im.  The directions for the next 

iteration are 0
1d = 0

2d , |
2d  = 0

3d , …, |
md  = . In the second iteration treat these 1

id  (i = 1, 2,  …, m) as treated the 0
id  (i = 1, 

2, …, m) in the first iteration and so forth. The above method was due to Powell (1964). 

III. CONCLUSIONS 
This paper contains  various nonlinear methods of estimation based on some numerical methods besides the nonlinear least squares 
and maximum likelihood estimation procedures. A test for the specification of error in nonlinear regression model has been 
explained along with the estimation of a mixed general Cobb-Douglas type function with multiplicative and additive errors. The 
presence of the autocorrelated disturbances in the nonlinear regression models has been examined by considering first order 
autoregressive process.  A seemingly unrelated nonlinear regression equations model has been discussed clearly in this paper. 
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