

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: I Month of publication: January 2018 DOI: http://doi.org/10.22214/ijraset.2018.1343

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Construction of the Diophantine Triple involving Pronic Number

G.Janaki¹, S.Vidhya²

^{1, 2,} Department of Mathematics, Cauvery College for Women, Trichy-18.

Abstract: We search for three distinct polynomials with integer coefficients such that the product of any two numbers increased by a non-zero integer (or polynomials with integer coefficients) is a perfect square. Keywords: Diophantine triples, Pronic number, Perfect square. Notations: Pronic Number of rank n = n(n+1)

I. INTRODUCTION

Let *n* be an integer. A set of positive integers $\{a_1, a_2, ..., a_m\}$ is said to have the property D(n) if $a_i a_j + n$ is a perfect square for all $1 \le i < j \le m$; such a set is called a Diophantine m-tuple of size *m*. The problem of construction of such set was studied by Diophantus. Many mathematicians considered the problem of the existence of Diophantine quadruples with the property D(n) for any arbitrary integer n [1] and also for any linear polynomials n. Further, various authors considered the connections of the problem of Diaphanous, Davenport and Fibonacci numbers in [2-14]. In this communication, we present three sections where in each of which we find the Diophantine triples from Pronic number with different ranks. A few interesting relations among the numbers in each of the above Diophantine triples are presented.

II. METHOD OF ANALYSIS

A. Section A Let $a = n^2 - n$ and $b = n^2 + n$ be Pronic number of rank n - 1 and n respectively such that $ab + (3n^2 + 1)$ is a perfect square say α^2 .

Let c be any non-zero integer such that

$$ac + (3n^2 + 1) = \beta^2 \tag{1}$$

$$bc + (3n^2 + 1) = \gamma^2 \tag{2}$$

Setting $\beta = a + \alpha$ and $\gamma = b + \alpha$, then subtracting (1) from (2), we get

$$c(b-a) = \gamma^2 - \beta^2 = (\gamma + \beta)(\gamma - \beta)$$
$$= (a+b+2\alpha)(b-a)$$

Thus, we get $c = a + b + 2\alpha$

Similarly by choosing $\beta = a - \alpha$ and $\gamma = b - \alpha$, we obtain $c = a + b - 2\alpha$

Here we have $\alpha = n^2 + 1$ and thus two values of c are given by $c = 4n^2 + 2$ and c = -2.

Thus, we observe that $\{n^2 - n, n^2 + n, 4n^2 + 2\}$ and $\{n^2 - n, n^2 + n, -2\}$ are Diophantine triples with the property $D(3n^2 + 1)$.

Some numerical examples are given below in the following table.

Table 1			
п	Diophantine Triples	$D(3n^2+1)$	
1	(0,2,6) & (0,2,-2)	4	
2	(2,6,18) & (2,6,-2)	13	
3	(6,12,38) & (6,12,-2)	28	

We present below, some of the Diophantine triples for Pronic number of rank mentioned above with suitable properties.

Table 2			
а	b	С	D(n)
$n^2 - n$	n $n^2 + n$	$4n^2 + 4$	$5n^2 + 4$
n = n		- 4	5/1 + 4
$n^2 - n$	$-n$ n^2+n	$4n^2 + 6$	$7n^2 \pm 9$
n - n		- 6	m + j
$n^2 - n$	$n^2 + n$	$4n^2 + 8$	$0n^2 + 16$
		-8	<i>711</i> + 10

B. Remarkable Observation

In general $\{n^2 - n, n^2 + n, 4n^2 + 2n\}$ and $\{n^2 - n, n^2 + n, -2n\}$ are Diophantine triples with the property $D((2n+1)n^2 + n^2)$.

C. Section B

Let $a = n^2 - 3n + 2$ and $b = n^2 - n$ be Pronic number of rank n - 2 and n - 1 respectively such that $ab + (n^2 - 2n + 1)$ is a perfect square say α^2 .

Let c be any non-zero integer such that

$$ac + (n^2 - 2n + 1) = \beta^2$$
(3)

$$bc + (n^2 - 2n + 1) = \gamma^2 \tag{4}$$

Applying the procedure as mentioned in section (A), we obtain

 $c = 4n^2 - 8n + 4 \text{ and } c = 0$ Thus, we observe that $\{n^2 - 3n + 2, n^2 - n, 4n^2 - 8n + 4\}$ and $\{n^2 - 3n + 2, n^2 - n, 0\}$ are Diophantine triples with the property $D(n^2 - 2n + 1)$.

Some numerical examples are given below in the following table.

Table 3			
п	Diophantine Triples	$D(n^2-2n+1)$	
2	(0,2,4) & (0,2,0)	1	
3	(2,6,16) & (2,6,0)	4	
4	(6,12,36) & (6,12,0)	9	

We present below, some of the Diophantine triples for Pronic number of rank mentioned above with suitable properties.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 6 Issue I, January 2018- Available at www.ijraset.com

Table 4			
а	b	С	D(n)
$n^2 - 3n + 2$	$n^2 - n$	$4n^2 - 8n + 6$	$3n^2-6n+4$
n = 3n + 2	n n	-2	5/1 0/1 4
$n^2 - 3n + 2$	$n^2 - n$	$4n^2 - 8n + 8$	$5n^2 - 10n + 9$
n = 3n + 2	n = n	- 4	$3n = 10n \pm 7$
$n^2 - 3n + 2$	$n^2 - n$	$4n^2 - 8n + 10$	$7n^2 - 14n + 16$
n = 3n + 2	n - n	- 6	n = 14n + 10

D. Remarkable Observation

In general $\{n^2 - 3n + 2, n^2 - n, 4n^2 - 8n + 2n\}$ and $\{n^2 - 3n + 2, n^2 - n, -2t\}$ are Diophantine triples with the property $D((2k+1)n^2 - 2pn + p^2)$ where n = 2, 3, ..., t = 0, 1, 2, ...

 $k = 0, 1, 2, \dots$ $p = 1, 2, \dots$

E. Section C

Let $a = n^2 - 5n + 6$ and $b = n^2 - 3n + 2$ be Pronic number of rank n - 3 and n - 2 respectively such that $ab + (-5n^2 + 20n - 11)$ is a perfect square say α^2 .

Let c be any non-zero integer such that

$$ac + \left(-5n^2 + 20n - 11\right) = \beta^2 \tag{5}$$

$$bc + (-5n^2 + 20n - 11) = \gamma^2$$
(6)

Applying the procedure as mentioned in section (A), we obtain

 $c = 4n^2 - 16n + 10$ and c = 6Thus, we observe that $\{n^2 - 5n + 6, n^2 - 3n + 2, 4n^2 - 16n + 10\}$ and $\{n^2 - 5n + 6, n^2 - 3n + 2, 6\}$ are Diophantine triples with the property $D(-5n^2 + 20n - 11)$.

Some numerical examples are given below in the following table.

Table 5			
п	Diophantine Triples	$D(-5n^2+20n-11)$	
1	(2,0,-2) & (2,0,6)	4	
4	(2,6,10) & (2,6,6)	-11	
5	(6,12,30) & (2,12,6)	-36	

We present below, some of the Diophantine triples for Pronic number of rank mentioned above with suitable properties.

Table 6			
а	b	С	D(n)
$n^2 - 5n + 6$	$n^2 - 3n + 2$	$4n^2 - 16n + 12$ 4	$3n^2 + 12n - 8$
$n^2 - 5n + 6$	$n^2 - 3n + 2$	$4n^2 - 16n + 14$	$-n^{2}+4n-3$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 6 Issue I, January 2018- Available at www.ijraset.com

		2	
$n^2 - 5n + 6$	$n^2 - 3n + 2$	$4n^2 - 16n + 16$	$n^2 - 4n + 4$
n Sh I O	n = 5n + 2	0	$n - \pi n + \pi$

III. CONCLUSION

In this paper we have presented a few examples of constructing a Diophantine triples for Pronic number of different rank with suitable properties. To conclude one may search for Diophantine triples for other special number with their corresponding suitable properties.

REFERENCES

- [1] Balker A, Duvemport H, "The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$ ", Quart.J.Math.Oxford Ser, 1969, 20(2), 129-137.
- [2] Jones B.E, "A second variation on a problem of Diophantus and Davenport", FibonacciQuart, 1977, 15, 323-330.
- [3] Brown E, "Sets in which xy + k is always a perfect square", Math.Comp, 1985, 45,613-620
- [4] Beardon A.F, Deshpande M.N, "Diophantine Triples", The Mathematical Gazette, 2002,86, 258-260
- [5] Deshpande M.N, "Families of Diophantine triplets", Bulletin of the Marathwada Mathematical Society, 2003, 4, 19-21
- [6] Fujita Y, "The extendibility of Diophantine pairs $\{k 1, k + 1\}$ ", Journal of Number Theory, 2008,128, 322-353.
- [7] Gopalan M.A and Pandichelvi V, "On the extendibility of the Diophantine triple involving Jacobsthal numbers $(J_{2n-1}, J_{2n+1} 3, 2J_{2n} + J_{2n-1} + J_{2n+1} 3)$ ", International Journal of Mathematics & Applications, 2009, 2(1), 1-3
- [8] Srividhya G, "Diophantine Quadruples for Fibonacci numbers with property D (1)", Indian Journal of Mathematics and Mathematical Science, 2009, 5(2), 57-59
- [9] Pandichelvi V, "Construction of the Diophantine triple involving polygonal numbers",
- [10] Impact Journal of Science and Technology, 2011, 5(1), 07-11.
- [11] Gopalan M.A, Srividhya G, "Two special Diophantine Triples", Diophantus J.Math, 2012, 1(1), 23-27
- [12] Gopalan M.A, Srividhya G, "Diophantine Quadruple for Fibonacci and Lucas numbers with property D (4)", Diophantus J.Math, 2012, 1(1), 15-18
- [13] Andrej Dujella, Zagreb, Croatia, "The Problem of Diophantus and Davenport for
- [14] Gaussian Integers", Glas.Mat.Ser.III, 1997, 32, 1-10.
- [15] Gopalan M.A, Geetha K, Manju Somanath, "On Special Diophantine Triples", Archimedes Journal of Mathematics, 2014, 4(1), 37-43
- [16] Gopalan M.A, Geetha V, Vidhyalakshmi S, "Dio 3-tuples for Special Numbers-I", The Bulletin of Society for Mathematical Services and Standards, 2014, 10, 1-6.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)