

Rakesh P.N.Roshan¹, D.M.Purohit², Sandip K.Matariya³

¹R.K.University, Rajkot, (Guj), India ²Shri M&N. Virani Science College, Department of Chemistry, Kalawad Road, Rajkot-390005, (Guj), India ³Smt.S.M.Panchal Science College, Department of Chemistry, Talod, (Guj), India

Abstract: 2-{1'-Aryl-1'-[4''-(2''',3'''-dichlorophenyl)piperazin-yl]-methyl}-cyclohexanone hydrochloride (4a-4l)have been synthesized. The products have been assayed for their antibacterial and antifungal activity against Gram+ve, Gram-ve bacteria and fungi. All the products were assigned with IR, ¹HNMR, Mass Spectra, TLC, and elemental analysis. Some of the products showed moderate activity, compare with known standard drugs.

I. INTRODUCTION

Piperazine derivatives showed a vital role largely due to the wide ranging of therapeutic activities. Taking into consideration diverse biodynamic activities such as analagesic¹, antibacterial², antidiabetic³, antifungal⁴, antialcer^{5, 6}, antihistaminic⁷, anthlminitic⁸, antiinflammatory⁹, antimicrobial¹⁰etc.The Mannich bases (4a-4l) have been synthesized by the condensation of 4-(2,3⁻ dichlorophenyl) piperazine hydrochloride, cyclohexanone with aromatic aldehyde in the presence of hydrochloric acid. All the products (4a-4l)were assigned with IR, ¹HNMR, Mass Spectra, TLC and Elemental analysis. The physical data recorded in Table no: I. antibacterial and anti-fungal activity recorded in Table no: II and comparable antibacterial and anti-fungal activity compared with known standard drugs represented in Table no: III.

A. Antibacterial and antifungal activity:

All the products (4a-4l) were tested by Cup-plate method¹¹ against the Gram positive Bacteria Bacillus megaterium; S.aureus, Gram negative bacteria Escherichia coli, S.Taphimarium and for antifungal activity against Aspergillusniger, Anrobacterawamori at a concentration of 50μ g/ml, using DMF as a solvent. After 24hrs of incubation at 37°C, the zone of inhibition were measured in mm. The activity was compared with known standard drugs viz. Ampicillin, Chloramphenicol, Norfloxacin, Fluconazole at the same concentration (50μ g/ml) which is represented in Table no II.All the synthesized compounds (4a-4l)showed moderate to good and remarkable activities with known standard drugs at same concentration which is represented in Table no III.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

III. EXPERIMENTAL SECTION

All the melting points were measured in open glass capillary method and are uncorrected. IR absorption Spectra (in cm⁻¹) were recorded on a SHIMADZU IR-435 spectrophotometer using KBr pellet method , ¹HNMR spectra on BRUKER (300mHz) spectrometer using CDCl₃ as internal standard (chemical shift in δ ppm) and Mass spectra on a Jeol-JMSD 300 Mass spectrometer at 70ev. The compounds were routinely checked by TLC method using silica gel G.

A. Synthesis of 2-{1'-(4''''-Methoxyphenyl-1'-[4'''-(2''',3''''-dichlorophenyl) piperazin-yl]-methyl}-cyclohexanonehydrochloriode (4e)

A compound of 4-(2',3'-dichlorophenyl) piperazine hydrochloride (2.68gm, 0.01m); cyclohexanone (0.98ml, 0.01m); 4-methoxy benzaldehyde (1.36ml, 0.01m); and hydrochloric acid (30%, 3.0ml) were charged in Isopropyl alcohol (10.0ml) solvent. The reaction mixture was refluxed 80-85°C for 8hrs. After the completion of reaction Isopropyl alcohol was distilled out(6.0ml to 7.0ml) and Acetone was charged (10.0ml). Reaction mixture was refluxed for two hrs and cooled to 30-35°C. The reaction mass was filtered and washed with Acetone (5.0ml) and dried. % Yield: 82.00%; M.P.198°C (Required: C: 64.29;H:6.47;N:6.25, C₂₄H₂₈O₂N₂Cl₂; Found: C: 64.25;H:6.42;N:6.21%). IR(KBr)(cm⁻¹): 2937 (C-H Str. Asym);2833(C-H Str. Sym);1444(C-H Str. Def); 3370(C-H Str., aromatic);1141(C-H Str., i.p.def);715(C-H Str., O.O.P def); 1307(C-N Str.), 1715 (C=0 str.)); ¹HNMR (δ ppm):2.62-(8H, $d,d-CH_2$; 3.31-3.37 (8H,d,-CH₂);3.77(3H,S,-OCH₃);6.85-7.69(4H,m,Ar-H);m/z: 2.66 86,97,110,131,177,199,265,310,387,413,448. Similarly other Mannich base salts(4a-4l)have been synthesized. The physical data of compounds represented in Table-I and antibacterial and anti-fungal activity of compounds (4a-4l) have been represented in Table-II and comparable antibacterial and anti-fungal activity represented in Table-III.

Compound	Ar	Molecular formula	M.P. °C	% Yield	%Nitrogen	
					Calculated Found	
4a	C ₆ H ₅ -	$C_{23}H_{26}ON_2Cl_2$	178	88.00	6.71	6.69
4b	2-ClC ₆ H ₄ -	$C_{23}H_{25}ON_2Cl_3$	195	75.22	6.20	6.18
4c	$4-ClC_6H_4-$	$C_{23}H_{25}ON_2Cl_3$	188	73.01	6.20	6.16
4d	4-FC ₆ H ₄ -	$C_{23}H_{25}ON_2Cl_2F$	181	70.50	6.44	6.19
4e	4-OCH ₃ C ₆ H ₄ -	$C_{24}H_{28}O_2N_2Cl_2$	198	82.00	6.25	6.21
4f	2,5-(OCH ₃) C ₆ H ₃ -	$C_{25}H_{30}O_3N_2Cl_2$	202	71.15	5.87	5.84
4g	3,4-(OCH ₃) C ₆ H ₃ -	$C_{25}H_{30}O_3N_2Cl_2$	219	72.30	5.87	5.83
4h	3,4,5-(OCH ₃) C ₆ H ₂ -	$C_{26}H_{32}O_4N_2Cl_2$	237	78.25	5.52	5.50
4i	2-OH-C ₆ H ₄ -	$C_{23}H_{26}O_2N_2Cl_2$	163	71.60	6.47	6.43
4j	$2-NO_2C_6H_4-$	$C_{23}H_{25}O_3N_3Cl_2$	205	81.00	9.09	9.01
4k	3-NO ₂ C ₆ H ₄ -	$C_{23}H_{25}O_3N_3Cl_2$	220	85.15	9.09	9.02
41	$4-NO_2C_6H_4-$	$C_{23}H_{25}O_3N_3Cl_2$	237	87.20	9.09	9.04

Table-I	
The physical data of compounds (4a-4l	I)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

Volume 6 Issue II, February 2018- Available at www.ijraset.com

Table-11							
Compound	Ar.	Antibacterial activity			Antifungal activity		
		Gram +v	ve bacteria	Gram –ve bacteria			
		B.mega	S.aureus	E.coli S.Taphimariu		A. niger	A. awamori
					m		
4a	C ₆ H ₅ -	14	15	19	13	17	13
4b	$2-ClC_6H_4-$	19	16	18	18	20	19
4c	$4-ClC_6H_4-$	21	19	22	13	21	19
4d	$4-FC_6H_4-$	19	17	21	16	16	15
4e	4-OCH ₃ C ₆ H ₄ -	18	19	17	16	19	18
4f	2,5-(OCH ₃) C ₆ H ₃ -	21	18	17	14	18	19
4g	3,4-(OCH ₃) C ₆ H ₃ -	20	19	18	18	13	21
4h	3,4,5-(OCH ₃) C ₆ H ₂ -	19	17	21	15	14	20
4i	2-OH-C ₆ H ₄ -	13	18	17	22	16	15
4j	2-NO ₂ C ₆ H ₄ -	17	22	21	15	22	18
4k	3-NO ₂ C ₆ H ₄ -	16	19	20	19	16	17
41	$4-NO_2C_6H_4-$	18	21	20	18	19	17
Note: Zone of inhibition in mm							

Table II

Note: Zone of inhibition in mm

Table-III
Comparable antibacterial and anti-fungal activity with known standard drugs.

Compound	Maximum antibacterial and anti-fungal activity						
	B.mega S.aureus E.coli S. Taphimarium A. nige		A. niger	A. awamori			
(4a-4l)	4b,4c,4d,4f,	4c,4e,4g,4j,	4a,4c,4d,4h,4j,	4i,4k	4b,4c,4e,4j,4	4b,4c,4f,4g,4h	
(50µg/ml)	4g,4h	4k,4l	4k,4l		1		
Ampicillin	22	21	20	21	-	-	
50µg/ml							
Chloramphenic	21	22	23	20	-	-	
ol 50µg/ml							
Norfloxacin50	23	20	22	21	-	-	
µg/ml							
Fluconazole50	-	-	-	-	21	21	
µg/ml							

IV. CONCLUSION

The compounds 2-{1'-Aryl-1'-[4''-(2''',3'''-dichlorophenyl) piperazin-yl)]-methyl}-cyclohexanone hydrochloride (4a-4l) have been synthesized. Some of the compounds showed good remarkable antibacterial and antifungal activity with compared with known standard drugs e.g: Ampicillin, Chloramphenicol, Norfloxacin and Fluconazole.

V. ACKNOWLEDGEMENTS

The authors are thankful to principal, Smt. S.M. Panchal Science College Talod, (Guj), India for providing research facilities, thankful to Head, Department of Chemistry, Saurastra University, Rajkot for ¹HNMR, IR Spectral facilities; thankful to R.K. University, Rajkot for Mass Spectra analysis.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

REFERENCES

- [1] Devos C Maleux MR, Baltes E and Gobert J. Ann. Allergy, 59,1987,278.
- [2] Baltzly R Dubreuil S, Ide WS and Corz E. J. org. Chem 141, 1949, 775.
- [3] Roth FF and Govier WM J. Pharmcol EXP Ther's 124,1958;347.
- [4] Hanna Toxics, ApplPharmacol, 4, 1961, 3936.
- [5] Hoffman DJ, Leveque MJ a d Thomson T, J. Pharmasci 72, 1983, 1342.
- [6] Tashio Pharmaceutical Co. Ltd. ChemAbstr. 101, 1984, 54722j.
- [7] Puttemans M, Bogert M. Hoogewijs CT, Dryon L. Massart D.L. a d Vanhealst L.J. Liqchromat, 7,1984, 2237.
- [8] TeuladeJ.C.Grassy G. Grard J.P. Chapt JP and deBuochberg MMS, Eur. J. Med. Chrm, 13, 1978, 271.
- [9] Ducomman P and Lehmann SD Rev can Biol 1952, 11298, Chem. Abstr. 47, 1953, 1292.
- [10] D.M.Purohit, D.S. Mehta and V.H.Shah Heterocyclic, communication 2(5) 1996, 469-470.
- [11] A.L. Barry; "The antimicrobial succeptibility Test Principal and Practices, Edicted by Illus lea and Fabiger 180, Bio. Abstr. 64 (1976). 25183.