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Abstract: In this article, we search the closed form traveling wave solutions of nonlinear partial differential equations such as 
the compound KdV-Burgers equation and the compound KdV equation by the rational )/( GG -expansion method. The 
considered equations are converted into ordinary differential equations by a suitable composite transformation and then the 
method is applied to investigate the solutions. The suggested method provides three types exact traveling wave solutions; namely 
the hyperbolic function solution, the trigonometric function solution and the rational function solution which are new and more 
general than the existing results in the literature. This method is more reliable and efficient to construct new and general exact 
solutions. 
Keywords: Rational )/( GG -expansion method, Compound KdV-Burgers equation, Compound KdV equation, Exact solution. 

I. INTRODUCTION 
Nonlinear partial differential equations (NPDEs) are widely used to describe complex phenomena in various fields including either 
the scientific works or engineering fields, such as fluid mechanics, chemical physics, chemichel kinematics, plasma physics, elastic 
media, optical fibers, solid state physics, biology, atmospheric and oceanic phenomena and so on. The investigation of the traveling 
wave solutions of some nonlinear partial differential equations (NPDEs) derived from such fields plays an important role. Certain 
special form solutions to NPDEs may depend only on a single combination of variables such as solitons. A soliton is a self-
reinforcing solitary wave, a wave packet or pulse that upholds its profile while it travels at constant speed. In the past years, a good 
number of researchers use various methods for finding explicit solutions of NPDEs. To investigate the special solutions of NPDEs, 
many powerful and direct methods have been established and developed [1-21]. The Chinese Mathematician Wang et al. [22] first 
proposed )/( GG -expansion method by which the traveling wave solutions of the nonlinear partial differential equations (NPDEs) 
are obtained. Making use of this method, some useful equations are also studied in Refs. [23-27]. In the recent years, further 
researchers have modified )/( GG -expansion method variously and found more new and general traveling wave solutions [28-

35].In this article, we employ the rational )/( GG -expansion method to examine the closed form traveling wave solutions for the 
compound KdV-Burgers equation and the compound KdV equation and obtain many new and more general the closed form 
traveling wave solutions. 

II. DESCRIPTION OF THE METHOD 
Consider the following nonlinear partial differential equation in two independent variables x  

and t :  

  0,...),,,,,( txttxxtx uuuuuuP ,        (1) 

where ),( txuu   is an unknown function, P  is a polynomial in ),( txuu  and its various partial derivatives. The followings are 
the main steps of the method. 

Step 1. Use the traveling wave transformation: 

  vtxtxuu  ),,( ,         (2)  
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where v  is the traveling wave speed. With the help of Eq. (2), the Eq. (1) becomes an ordinary differential equation as  

0,...),,,(  uuuuQ          (3) 

containing )(u  and its various derivatives. The prime denotes the order of derivative with respect to . 

Step 2. For convenience, integrate Eq. (3) one or more times and integral constant can be set to zero.  

Step 3. Suppose that the solution of Eq. (3) can be expressed in )/( GG  as follows:  
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where na and nb  are non-zero real constants to be determined later and )(GG   satisfies the following second order liner ODE: 

0)()()(   GGG ,        (5) 

where   and   are real constants. Eq. (5) can be rearranged into 

      


 GGGGGG
d
d /// 2 .      (6) 

Eq. (5) (or equivalent to Eq. (6)) possesses the following general solutions: 
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where A  and B are arbitrary constants. 

Step 4: To determine the positive integer n , substitute (4) along with (5) into Eq. (3) and take the homogeneous balance between 
the highest order derivatives and the highest order nonlinear terms appearing in (3). If the degree of )(u  is nu )]([deg  , 
therefore, the degree of the other expressions will be as follows: 
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Step 5: Use Eq. (4) along with Eq. (5) into Eq. (3) with the value of n  obtained in step 4. This substitution forms a polynomial of 
)/'( GG . Equating the coefficients of )/( GG  and set to zero. This procedure yields a system of algebraic equations which can 

be solved for getting ia , ib ,  ,   and v  and the value of the other needful parameters. 

Step 6: We substitute the values of ia , ib ,  ,   and v  together with the solutions given in Eq. (7) into Eq. (4). This completes 

the determination of the solutions to the nonlinear evolution equation (1).  
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III. APPLICATION OF THE METHOD 
In this section, we apply the rational )/( GG -expansion method to construct the closed form traveling wave solutions of the 
compound KdV-Burgers equation and the compound KdV equation. 

A. The Compound KdV-Burgers Equation 
Consider the Compound KdV-Burgers Equation  

  02  xxxxxxxt suruuqupuuu ,       (8) 

where rqp ,,  and s are arbitrary constants.  

The traveling wave transformation vtxtxuu  ),,(  reduce Eq. (8) to the ODE  

  02  usuruquupuuv ,         (9)  

which under the integration becomes  

  0
32

32  cusuruqupvu ,      (10) 

with integral constant c . Balancing the terms 3u  and u   in Eq. (10), we obtain 1n . Then the solution Eq. (4) takes the form 
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Substituting Eq. (11) into Eq. (10), the left hand side of Eq. (10) becomes a polynomial in )/( GG  . Setting each coefficient of this 
polynomial to zero, we obtain an over determined set of algebraic equations (for simplicity, we will omit them to display) for

vbaba ,,,, 1100  and c . Solving this set of equations by using the symbolic computation software, such as Maple, we obtain the 

following set of solutions: 
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where ,1b  and  are all arbitrary constants. 
Now, substituting Eq. (12) into solution Eq. (11), we obtain 
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where vtx  ;   and   are all arbitrary constants. 
Substituting Eq. (6) into Eq. (13) and simplifying we have the following exact traveling wave solutions: 

When 042   , we obtain the hyperbolic function solution 
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Since A  and B  are arbitrary constants, we may choose  sinh,cosh 11 rBrA   and obtain the solutions 
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1 BAr  , )/(tanh 1 AB , t
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When 042   , we obtain the trigonometric function solution 
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Since A  and B  are arbitrary constants, ifwe choose  sin,cos 22 rBrA   then after simplification we obtain the solution 
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When 042   , we obtain rational solution 
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where t
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24326 22222    ;   and   are all arbitrary constants. 

The above obtained solutions to the compound KdV-Burgers equation are new and more general than the existing results in the 
literature. 

B. The Compound KdV Equation 
Now we construct the traveling wave solutions of the Compound KdV Equation 

  02  xxxxxt suuqupuuu ,        (19) 
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where qp,  and s  are non-zero real constants.  

Making use of the traveling wave transformation vtxtxuu  ),,( reduces Eq. (19) into the ODE  

  02  usuquupuuv ,       (20) 

which becomes  
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32  cusuqupvu ,       (21) 

under the integration with integral constant c . Balancing the terms 3u  and u   in Eq. (21), we obtain 1n . Then the solution Eq. 
(4) takes the form 
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Substituting Eq. (22) into Eq. (21), the left hand side of Eq. (21) becomes a polynomial in )/( GG . Setting each coefficient of this 
polynomial to zero, we obtain an over determined set of algebraic equations (for simplicity, we will omit them to display) for 

vbaba ,,,, 1100  and c .  Solving this set of equations by using the symbolic computation software, such as Maple 13, we obtain the 

following set of solutions: 
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where 0b , 1b ,   and   are all arbitrary constants. 
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where 1a , 0b , 1b , v ,   and   are all arbitrary constants. 
Now, substituting Eq. (23) into solution Eq. (22), we obtain 
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Using Eq. (6) into Eq. (26), we can obtain the following exact traveling wave solutions to Eq. (19). 
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When 042   , we obtain the hyperbolic function solution 





































































))2/4sinh(())2/4cosh((

))2/4cosh(())2/4sinh((
2

4
2

2

))2/4sinh(())2/4cosh((

))2/4cosh(())2/4sinh((
2

4
2

4)4(6

4
1)(

22

222

22

222
2

1











BA

BA

BA

BA
pqsp

q
u (27)        

Since A  and B  are arbitrary constants. We might choose  sinh,cosh 11 rBrA   and obtain the solutions 

))2/4tanh((4
)})2/4tanh((4{2)4(6

4
1)(

22
1

22
1

2

1










r
rpqsp

q
u   (28)        

where 22
1 BAr  , )/(tanh 1 AB ,  t

q
qspqsx

4
82 22    ;   and   are all arbitrary constants.  

When 042   , we obtain the trigonometric function solution 
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Since A  and B  are arbitrary constants. We might choose  sin,cos 22 rBrA   and obtain the solutions 
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When 042   , we obtain the rational function solution 
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Using Eq.(6) into Eqs. (24) and (25) we also might construct much more new and general solutions to the compound KdV equation. 
For simplification and to avoid the annoyed of the readers these are not recorded here.  

IV. CONCLUSION 
In this article, the rational )/( GG -expansion method has been applied to the compound KdV-Burgers equation and the compound 
KdV equation. Using this method, we have successfully found the traveling wave solutions in terms of hyperbolic, trigonometric 
and rational functions. On comparing the results throughout this article with those of [36], we see that, our results are more new and 
general. This shows that, the performance of this method is reliable, effective and giving more new and general solutions to many 
other nonlinear partial differential equations (NPDEs). Although the method is applied to only a small number (two) of nonlinear 
equations, it can be applied to many other equations. 
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