
$\qquad$
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
$\qquad$

# ON s-k -Tripotent Matrices 

N. Elumalai ${ }^{1}$, R. Anuradha ${ }^{2}$, R. Mathubala ${ }^{3}$<br>${ }^{1,2,3}$ PG\& Research Department of Mathematics, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai 609305,Tamilnadu

Abstract: The concept of s-k-tripotent is introduced. Some basic results in s-k-tripotent matrices and their properties are given. Keywords: Tripotent matrices, $k$-tripotent matrices.

## I. INTRODUCTION

A Matrix ' A ' that satisfies $\mathrm{A}^{3}=\mathrm{A}$ is called a tripotent matrix. In this paper basic concept of s-k-tripotent matrices are introduced. A Theory of k-real and k-Hermitian matrices as a generalization of secondary real and secondary Hermitian Matrices was developed by hill and waters[2]. The secondary symmetric and secondary orthogonal matrices have been analysed by Ann lee [1] in the year 1976. The secondary k-Hermitian matrices are introduced in 2009 by Meenakshi, krishnamoorthy and Ramesh[3].S. Krishnamoorthy and P.S Meenakshi have studied the basic concepts of k-tripotent matrices as generalization of k-tripotent matrices. The sum and products of k- tripotent matrices are introduced in 2013 by S. Krishnamoorthy and P.S. Meenakshi[4]. Let' K' be the associated permutation matrix of K and let V be the permutation matrix with unit in the secondary diagonal. Clearly $\mathrm{K} \& \mathrm{~V}$ satisfies the following properties:

$$
\begin{aligned}
& \mathrm{K}=\mathrm{K}^{\mathrm{T}}=\bar{K}=\mathrm{K}^{*}, \mathrm{~K}^{2}=\mathrm{I} \\
& \mathrm{~V}=\mathrm{V}^{\mathrm{T}}=\mathrm{V}^{-1}=\mathrm{V}^{*} \text { and } \mathrm{V}^{2}=\mathrm{I}
\end{aligned}
$$

## II. S-K-TRIPOTENT MATRICES

## A. Definition

A matrix $\mathrm{A}=\mathbf{a}_{\mathbf{i j}}$ in $\mathrm{C}_{\mathrm{nxn}}$ is said to be s-k-tripotent if $\sum_{t=1}^{n} a_{n-k(i) t}\left[\sum_{m=1}^{n} a_{t m} a_{m(n-k) t}\right]=a_{i j}$
This equivalent to $\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$.
It is easy to see that $K V A^{3} V K=A$
$\mathrm{KVAVK}=\mathrm{A}^{3}$
$V K A^{3} K V=A$
$\mathrm{VKAKV}=\mathrm{A}^{3}$

1) Example

Let $\mathrm{A}=\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 0 & -1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right], \mathrm{K}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \& \mathrm{~V}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
$\mathrm{KVA}^{3} \mathrm{VK}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 0 & -1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$

$$
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & -1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & -1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

$\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$

Therefore A is s-k-tripotent matrix.
2) Theorem

If $\mathrm{A} \in \mathrm{C}^{\mathrm{nxn}}$ be a s-k-tripotent matrix then
a) $\mathrm{A}^{\mathrm{T}}, \bar{A}, \mathrm{~A}^{*}$ and $\mathrm{A}^{-1}$ are also s-k-tripotent
b) $\mathrm{A}^{\mathrm{n}}$ is s -k-tripotent for all positive integers ' n '
c) A is periodic with period 9
d) $\mathrm{A}^{3}$ is $s$-k-tripotent
3) Proof:
a) $\mathrm{A}^{\mathrm{T}}=\left(\mathrm{KVA}^{3} \mathrm{VK}\right)^{T}$

$$
=K V A^{T} A^{T} A^{T} V K
$$

$A^{T}=K V\left(A^{T}\right)^{3} V K$
$\therefore \mathrm{A}^{\mathrm{T}}$ is s-k-tripotent
$\overline{\mathrm{KV} A^{3} \mathrm{VK}}=\mathrm{KV}\left(\bar{A}^{3}\right) V \mathrm{~K}$
$=\mathrm{KV}(\bar{A})^{3} \mathrm{VK}$
$=\bar{A}$
$\therefore \bar{A}$ is s-k-tripotent
$\mathrm{KVA}^{3} \mathrm{VK}=A^{*}$

$$
\begin{aligned}
& =\mathrm{KVA}^{3 *} \mathrm{VK} \\
& =\mathrm{KVA}^{* 3} \mathrm{VK} \\
& =\mathrm{A}^{*}
\end{aligned}
$$

$\therefore \mathrm{A}^{*}$ is s-k-tripotent.

$$
\begin{aligned}
& K V A^{3} V K^{-1}=K V A^{3-1} V K \\
& =K V\left(\mathrm{~A}^{-1}\right)^{3} \mathrm{VK}
\end{aligned}
$$

$=\mathrm{A}^{-1}$
$\therefore \mathrm{A}^{-1}$ is s-k-tripotent.
b) $\mathrm{A}^{\mathrm{n}}=\left(\mathrm{KVA}^{3} \mathrm{VK}\right)^{\mathrm{n}}$

$$
=\mathrm{KVA}^{3} \mathrm{VK} \mathrm{KVA}^{3} \mathrm{VK} . . . . . . . . . . . \mathrm{n} \text { times }
$$

$=K V A^{3 n} V K$
$=K V\left(A^{\mathrm{n}}\right)^{3} \mathrm{VK}$
$\therefore \mathrm{A}^{\mathrm{n}}$ is s-k-tripotent.
c) $\mathrm{A}^{9}=\mathrm{A}^{3} \mathrm{~A}^{3} \mathrm{~A}^{3}$

$$
\begin{aligned}
& =(\text { KVAVK })(\text { KVAVK }) \quad \text { (KVAVK) } \\
& =\text { KVAAAVK }^{3} \\
& =\text { KVA }^{3} \mathrm{VK} \\
& \mathrm{~A}^{9}=\mathrm{A}
\end{aligned}
$$

$$
\therefore \quad A^{9} \text { is period with } 9 .
$$

d) Theorem

If $\mathrm{A} \in \mathrm{C}^{\mathrm{nxn}}$ be a $s$-k-tripotent matrix then -A is $\mathrm{s}-\mathrm{k}$-tripotent.
a) Proof: Let s-k-tripotentmatrix $\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$
$-\left(\mathrm{KVA}^{3} \mathrm{VK}\right)$
$\Rightarrow\left(\mathrm{KV}-\left(\mathrm{A}^{3}\right) \mathrm{VK}\right)$
$\Rightarrow\left(\mathrm{KV}\left(-\mathrm{A}^{3}\right) \mathrm{VK}\right)$
$-\left(\mathrm{KVA}^{3} \mathrm{VK}\right)=-\mathrm{A}$ Hence -A is s-k-tripotent.
e) Theorem

Let $\mathrm{A}, \mathrm{B} \in \mathrm{C}^{\mathrm{nxn}}$ be two $\mathrm{s}-\mathrm{k}$-tripotent matrices, $\mathrm{A}+\mathrm{B}$ is $\mathrm{s}-\mathrm{k}$-tripotent matrices if and only if $\mathrm{A}=-\mathrm{B}$.
a) Proof: Let A and B are two s -k-tripotent matrices
$\therefore \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$ and $\mathrm{KVB}^{3} \mathrm{VK}=\mathrm{B}$
Assume A=-B

$$
\mathrm{A}+\mathrm{B}=\mathrm{KVA}^{3} \mathrm{VK}+\mathrm{KVB}^{3} \mathrm{VK}
$$

$=K V\left(A^{3}+B^{3}\right) V K$
$=K V(A+B)^{3} V K$
$\therefore \mathrm{A}+\mathrm{B}=\mathrm{KV}(\mathrm{A}+\mathrm{B})^{3} \mathrm{VK}$
i.e., $\mathrm{A}+\mathrm{B}$ is s-k-tripotent.

Conversely,

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \text { is } \mathrm{s} \text {-k-tripotent. } \\
& \mathrm{A}+\mathrm{B}=\mathrm{KV}(\mathrm{~A}+\mathrm{B})^{3} \mathrm{VK} \\
& =K V\left(A^{3}+B^{3}+3 A B^{2}+3 A^{2} B\right) V K \\
& =K V\left(A^{3}+B^{3}+3 A B[A+B]\right) V K \\
& =K V A^{3} V K+K V B^{3} V K+K V(3 A B[A+B]) V K \\
& =A+B+K V(3 A B[A+B]) V K
\end{aligned}
$$

Hence $\mathrm{KV}(3 \mathrm{AB}[\mathrm{A}+\mathrm{B}]) \mathrm{VK}=0$ if $\mathrm{A}=-\mathrm{B}$.
f) Theorem

If $A^{9}=A^{*}$ then Areduces to orthogonal projection.
$\mathrm{AB}=\mathrm{BA}$
$\mathrm{AB}=\mathrm{KVA}^{3} \mathrm{VK}+\mathrm{KVB}^{3}{ }^{3} \mathrm{VK}$
= KVAAAVK KVBBBVK
$=$ KV AAA BBB VK
= KVAABABBVK
$=$ KVABABABVK
$\therefore \mathrm{AB}=\mathrm{KV}(\mathrm{AB})^{3} \mathrm{VK}$
Hence AB is s -k-tripotent.

## B. Generalization

If $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \ldots \ldots \ldots \ldots \ldots . . . \mathrm{A}_{\mathrm{n}}$ are s-k-tripotent belongs to a commuting family of matrices then $\prod_{i=1}^{n} A_{i}$ is s-k-tripotent.

1) Proof

Let $\mathrm{A}_{1} \mathrm{a}_{2} \ldots \ldots \ldots \ldots \mathrm{~A}_{\mathrm{n}}$ s-k-tripotent.

$$
\begin{aligned}
& \mathrm{KV}\left(\prod_{i=1}^{n} A_{i}\right)^{3} \mathrm{VK}=\mathrm{KV}\left[\mathrm{~A}_{1} \mathrm{~A}_{2} \ldots \ldots \ldots \ldots . \mathrm{A}_{\mathrm{n}}\right] \mathrm{VK} \\
= & \mathrm{KV}\left[\mathrm{~A}_{1} \mathrm{~A}_{2} \ldots \ldots \ldots \ldots \mathrm{~A}_{\mathrm{n}}\right] \mathrm{VK} \\
= & \mathrm{KV}\left[\mathrm{~A}_{1}{ }^{3} \mathrm{~A}_{2}{ }^{3} \mathrm{~A}_{3}{ }^{3} \ldots \ldots \ldots . \mathrm{A}^{3}\right] \mathrm{VK} \\
= & \left.\mathrm{KVA}_{1}{ }^{3} \mathrm{~A}_{2}{ }^{3} \mathrm{~A}_{3}{ }^{3} \ldots \ldots \ldots \ldots \ldots \mathrm{~A}_{\mathrm{n}}{ }^{3}\right] \mathrm{VK} \\
= & \mathrm{A}_{1} \mathrm{~A}_{2} \ldots \ldots \ldots . . \mathrm{A}_{\mathrm{n}} \\
= & \prod_{i=1}^{n} A_{i}
\end{aligned}
$$

Therefore s-k-tripotent.
C. Theorem

If $\mathrm{A} \in \mathrm{C}^{\mathrm{nxn}}$ then any two of the following statements implies the other one.

1) A is s-k-tripotent
2) A is s -k-symmetric
3) A is cube symmetric
4) Proof:
a) And (b) implies that (c)

$$
\begin{aligned}
& \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A} \text { and } \mathrm{KVA}^{\mathrm{T}} \mathrm{VK}=\mathrm{A} \\
& \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{KVA}^{T} \mathrm{VK} \\
& \mathrm{~A}^{3}=\mathrm{A}^{\mathrm{T}}
\end{aligned}
$$

$\therefore \mathrm{A}$ is cube symmetric.
b) And (c) implies that (a)
$K V A^{T} V K=A$ and $A^{3}=A^{T}$ substitute $A^{3}=A^{T}$ in $\quad K V A^{T} V K=K V A^{3} V K=A$. $\therefore \mathrm{A}$ is s-k-tripotent.
c) And (a) implies that (b)

$$
\begin{aligned}
& A^{3}=A^{T} K V A^{3} V K=A \text { substitute } A^{3}=A^{T} \text { in } K V A^{3} V K=A . \\
& K V A^{T} V K=A . \\
& \therefore A \text { is } s \text {-k-symmetric. }
\end{aligned}
$$

## D. Theorem

If $\mathrm{A} \in \mathrm{C}^{\mathrm{nxn}}$ then any two of the following statements implies the other one.

1) A is s-k-tripotent
2) $A$ is symmetric
3) A is s-k cube symmetric
4) Proof:
a) And (b) implies that (c)

$$
\mathrm{A}=\mathrm{A}^{\mathrm{T}} \text { and } \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A} \text { implies that } \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}^{\mathrm{T}}
$$

Therefore A Isk-cube symmetric.
b) And (c) implies that (a)
$\mathrm{A}=\mathrm{A}^{\mathrm{T}}$ and $\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}^{\mathrm{T}}$ implies that $\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$
Therefore A is s-k-tripotent.
c) And (a) implies that (b)

$$
\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}^{\mathrm{T}} \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A} \Rightarrow \mathrm{~A}^{\mathrm{T}}=\mathrm{A}
$$

Therefore A is symmetric.
E. Theorem

If $A \in \mathrm{C}^{\mathrm{nxn}}$ then any two of the following statements implies the other one.

1) A is s-k-tripotent
2) $A$ is $s-k-H e r m i t i a n ~$
3) A is s -k-cube Hermitia
4) Proof
a) And (b) implies that (c)
$\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$ and $\mathrm{KVA}^{*} \mathrm{VK}=\mathrm{A}$

$$
\begin{aligned}
\mathrm{KVA}^{3} \mathrm{VK} & =\mathrm{KVA}^{*} \mathrm{VK} \\
\mathrm{~A}^{3} & =\mathrm{A}
\end{aligned}
$$

$A$ is cube Hermitian.
b) And (c) implies that (a)
$K V A^{*} V K=A$ and $A^{3}=A^{*}$
Substitute $A^{3}=A^{*}$ in $\mathrm{KVA}^{*} \mathrm{VK}=\mathrm{A}$
$\Rightarrow \mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$
Hence A is s-k-tripotent.
c) And (a) implies that (b)
$\mathrm{A}^{3}=\mathrm{A}$ and $\mathrm{KVA}^{3} \mathrm{VK}=\mathrm{A}$
Substitute $A^{3}=A^{*}$ in $K V A^{3} V K=A \Rightarrow K V A^{*} V K=A . \quad$ Hence $A$ is s-k-tripotent

## REFERENCES

[1] Ann Lee:secondary symmetric and secondary skew symmetric, secondary orthogonal matrices;Math.hungary7,(1976)
[2] Hill and Waters S.R: on k-real and k-Hermitian matrices;journalcomput; vol.4,no.2,DEC(2008)
[3] Meenakshi. A.R, Krishnamoorthy. S and Ramesh .G :on Secondary k-Hermitian matrices; J.Modernsci.,IC(2009).
[4] S.Krishnamoorthy and PS.Meenakshi: on sums and products of k-tripotent matrices vol. 2 issue 7 july 2013

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET


IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

## INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

