

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: II Month of publication: February 2018
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

ON s-k – **Tripotent Matrices**

N. Elumalai¹, R. Anuradha², R. Mathubala³

^{1, 2, 3}PG& Research Department of Mathematics, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai – 609305, Tamilnadu

Abstract: The concept of s-k-tripotent is introduced. Some basic results in s-k-tripotent matrices and their properties are given. Keywords: Tripotent matrices, k-tripotent matrices.

I. INTRODUCTION

A Matrix 'A' that satisfies $A^3 = A$ is called a tripotent matrix. In this paper basic concept of s-k- tripotent matrices are introduced. A Theory of k-real and k-Hermitian matrices as a generalization of secondary real and secondary Hermitian Matrices was developed by hill and waters[2]. The secondary symmetric and secondary orthogonal matrices have been analysed by Ann lee [1] in the year 1976. The secondary k-Hermitian matrices are introduced in 2009 by Meenakshi, krishnamoorthy and Ramesh[3].S. Krishnamoorthy and P.S Meenakshi have studied the basic concepts of k-tripotent matrices as generalization of k-tripotent matrices. The sum and products of k- tripotent matrices are introduced in 2013 by S. Krishnamoorthy and P.S. Meenakshi[4]. Let' K' be the associated permutation matrix of K and let V be the permutation matrix with unit in the secondary diagonal. Clearly K &V satisfies the following properties:

$$\mathbf{K} = \mathbf{K}^{\mathrm{T}} = \mathbf{K} = \mathbf{K}^{*}, \mathbf{K}^{2} = \mathbf{I}$$

 $\mathbf{V} = \mathbf{V}^{\mathrm{T}} = \mathbf{V}^{-1} = \mathbf{V}^{*}$ and $\mathbf{V}^{2} = \mathbf{I}$

II. S-K-TRIPOTENT MATRICES

A. Definition

A matrix A=**a**_{ij}in C_{nxn} is said to be s-k-tripotent if $\sum_{t=1}^{n} a_{n-k(i)t} \left| \sum_{m=1}^{n} a_{tm} a_{m(n-k)t} \right| = a_{ij}$

This equivalent to $KVA^{3}VK=A$. It is easy to see that $KVA^{3}VK=A$ $KVAVK=A^{3}$ $VKA^{3}KV=A$ $VKAKV=A^{3}$

1) Example Let A= $\begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & -1/2 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$, K= $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ & V= $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ KVA³VK= $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & -1/2 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ = $\begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & -1/2 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$ KVA³VK = A

Therefore A is s-k-tripotent matrix.

2) Theorem

- If $A \in C^{nxn}$ be a s-k-tripotent matrix then
- a) A^{T} , \overline{A} , A^{*} and A^{-1} are also s-k-tripotent
- b) Aⁿ is s-k-tripotent for all positive integers 'n'
- *c*) A is periodic with period 9
- d) A^3 is s-k-tripotent
- 3) Proof:

a) $A^{T} = (KVA^{3}VK)^{T}$

= KV $A^{T}A^{T} A^{T}VK$ $A^{T} = KV(A^{T})^{3}VK$ $\therefore A^{T}$ is s-k-tripotent

 $\overline{\mathsf{KV}A^3\mathsf{VK}} = \mathsf{KV}(\overline{A}^3)\mathsf{VK}$

 $= KV(\bar{A})^3 VK$

 $=\overline{A}$

 $\therefore \overline{A}$ is s-k- tripotent

 $KVA^{3}VK = A^{*}$

 $= KVA^{3*}VK$ $= KVA^{*3}VK$ $= A^{*}$ $\therefore A^{*} \text{ is s-k-tripotent.}$

$$K V A^{3}V K^{-1} = K V A^{3^{-1}}V K$$

 $= \mathbf{KV}(\mathbf{A}^{-1})^3 \mathbf{VK}$ $= \mathbf{A}^{-1}$ $\therefore \mathbf{A}^{-1} \text{ is s-k-tripotent.}$

b) $A^n = (KVA^3VK)^n$

=KVA³VK KVA³VK.....n times = KVA³ⁿVK = KV(Aⁿ)³VK \therefore Aⁿ is s-k-tripotent.

c) $A^9 = A^3 A^3 A^3$

= (KVAVK) (KVAVK) (KVAVK)= KVAAAVK $= KVA^{3}VK$ $A^{9} = A$ $\therefore A^{9} \text{ is period with } 9.$ d) Theorem

If $A \in C^{nxn}$ be a s-k-tripotent matrix then -A is s-k-tripotent. *a)* Proof: Let s-k- tripotentmatrix KVA³VK=A -(KVA³VK) \Rightarrow (KV-(A³)VK) \Rightarrow (KV(-A³)VK)

Volume 6 Issue II, February 2018- Available at www.ijraset.com

 $-(KVA^{3}VK) = -A$ Hence –A is s-k-tripotent. e) Theorem Let $A, B \in C^{nxn}$ be two s-k-tripotent matrices, A+B is s-k-tripotent matrices if and only if A = -B. a) Proof: Let A and B are two s-k-tripotent matrices .: KVA³VK=A and KVB³VK=B Assume A = -B $A+B = KVA^3VK+KVB^3VK$ $= KV(A^3+B^3)VK$ $= KV(A+B)^{3}VK$ $\therefore A+B = KV(A+B)^3VK$ i.e.,A+B is s-k-tripotent. Conversely, A+B is s-k-tripotent. $A+B = KV(A+B)^3VK$ $= KV(A^{3}+B^{3}+3AB^{2}+3A^{2}B) VK$ $= KV (A^3+B^3+3AB[A+B]) VK$ = KVA³VK+KVB³VK+KV(3AB[A+B]) VK = A+B+KV (3AB [A+B]) VKHence KV (3AB[A+B]) VK = 0 if A= -B. Theorem fIf $A^9 = A^*$ then Areduces to orthogonal projection. AB = BA $AB = KVA^{3}VK + KVB^{3}VK$ = KVAAAVK KVBBBVK = KV AAA BBB VK = KVAABABBVK = KVABABABVK \therefore AB = KV(AB)³ VK Hence AB is s-k-tripotent. **B.** Generalization

If A1 A2An are s-k-tripotent belongs to a commuting family of matrices then

 $\prod_{i=1}^{i} A_i \text{ is s-k-tripotent.}$

1) Proof Let $A_1a_2....A_n$ s-k-tripotent. $KV\left(\prod_{i=1}^{n} A_i\right)^3 VK = KV [A_1 A_2...A_n] VK$ $= KV [A_1 A_2...A_n] VK$ $= KV[A_1^3 A_2^3 A_3^3...A_n^3] VK$ $= KVA_1^3 A_2^3 A_3^3...A_n^3] VK$ $= A_1 A_2...A_n$ $= \prod_{i=1}^{n} A_i$

Therefore s-k-tripotent.

- C. Theorem
- If $A \in C^{nxn}$ then any two of the following statements implies the other one.
- 1) A is s-k-tripotent
- 2) A is s-k-symmetric
- 3) A is cube symmetric
- 4) Proof:
- *a)* And (b) implies that (c)
 - $KVA^{3}VK = A \text{ and } KVA^{T}VK = A$ $KVA^{3}VK = KVA^{T}VK$ $A^{3} = A^{T}$
 - \therefore A is cube symmetric.
- b) And (c) implies that (a) $KV A^T VK = A \text{ and } A^3 = A^T \text{ substitute } A^3 = A^T \text{ in}$ $\therefore A \text{ is s-k-tripotent.}$

$$\mathbf{K}\mathbf{V}\mathbf{A}^{\mathrm{T}}\mathbf{V}\mathbf{K} = \mathbf{K}\mathbf{V}\mathbf{A}^{\mathrm{3}}\mathbf{V}\mathbf{K} = \mathbf{A}$$

- c) And (a) implies that (b)
 - $A^3 = A^T$ KV A^3 VK = A substitute $A^3 = A^T$ in KV A^3 VK = A. KV A^T VK = A. ∴ A is s-k-symmetric.
- D. Theorem
- If $A \in C^{nxn}$ then any two of the following statements implies the other one.
- 1) A is s-k-tripotent
- 2) A is symmetric
- 3) A is s-k cube symmetric
- 4) Proof:
- *a)* And (b) implies that (c)

 $A{=}A^{T} \text{ and } KVA^{3}VK{=}A \text{ implies that } KVA^{3}VK{=}A^{T}$ Therefore A Isk-cube symmetric.

b) And (c) implies that (a)

 $A=A^{T}$ and $KVA^{3}VK=A^{T}$ implies that $KVA^{3}VK=A$ Therefore A is s-k-tripotent.

c) And (a) implies that (b)

 $KVA^{3}VK=A^{T} KVA^{3}VK=A \implies A^{T}=A$

Therefore A is symmetric.

- E. Theorem
- If $A \in C^{nxn}$ then any two of the following statements implies the other one.
- 1) A is s-k-tripotent
- 2) A is s-k-Hermitian
- 3) A is s-k-cube Hermitia
- 4) Proof

a) And (b) implies that (c)

 $KVA^{3}VK = A$ and $KVA^{*}VK = A$

 $KVA^{3}VK = KVA^{*}VK$ $A^{3} = A$ A is cube Hermitian.

b) And (c) implies that (a)

 $KVA^*VK = A$ and $A^3 = A^*$ Substitute $A^3 = A^*$ in $KVA^*VK = A$ $\Rightarrow KVA^3VK = A$ Hence A is s-k-tripotent.

c) And (a) implies that (b)

 $A^{3} = A$ and $KVA^{3}VK = A$ Substitute $A^{3} = A^{*}$ in $KVA^{3}VK = A \implies KVA^{*}VK = A$.

Hence A is s-k-tripotent

REFERENCES

[1] Ann Lee:secondary symmetric and secondary skew symmetric, secondary orthogonal matrices;Math.hungary7,(1976)

[2] Hill and Waters S.R: on k-real and k-Hermitian matrices; journalcomput; vol.4,no.2,DEC(2008)

[3] Meenakshi. A.R, Krishnamoorthy. S and Ramesh .G :on Secondary k-Hermitian matrices; J.Modernsci., IC(2009).

[4] S.Krishnamoorthy and PS.Meenakshi: on sums and products of k-tripotent matrices vol.2 issue 7 july 2013

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)