

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: II Month of publication: February 2018
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

A Secure Access Policies Based Data Deduplication System

Mr. T. A. MohanaPrakash¹, Nivas Prabu V², Vigneshvaran G³, Prince E. T⁴,

¹Associate Professor

^{2, 3, 4} Students of B.E. Computer Science Department ^{2,3,4} Panimalar Institute of Technology, Chennai, Tamil Nadu, India.

Abstract: Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. Big Data in most companies are processed by Hadoop by submitting the jobs to Master. The Master distributes the job to its cluster and process map and reduces tasks sequentially. But nowadays the growing data need and the competition between Service Providers leads to the increased submission of jobs to the Master. This Concurrent job submission on Hadoop forces us to do Scheduling on Hadoop Cluster so that the response time will be acceptable for each job. In this Deduplication techniques are most widely employed to backup data and minimize network and storage overhead by detecting and eliminating redundancy among data. So which is crucial for eliminating duplicate copies of identical data in order to save storage space and network bandwidth? We present an attribute-based storage system with secure deduplication in a hybrid cloud setting, using public cloud and private cloud. Where a private cloud is responsible for duplicate detection and a public cloud manages the storage. Instead of keeping multiple data copies with the same content, the system eliminates redundant data by keeping only one physical copy and referring other redundant data to that copy. Each such copy can be defined based on user access policies. In this user will upload the file with access policies and then file type question with answer. Then same file with different access policies to set the particular file to replace the reference. Where a user's private key is associated with an attribute set, a message is encrypted under an access policy oser a set of attributes, and a user can decrypt a ciphertext with his/her private key if his/her set of attributes satisfies the access policy associated with this ciphertex

I. RELATED WORK

In this paper, we present an attribute-based storage system which employs ciphertext-policy attribute-based encryption (CP-ABE) and supports secure deduplication. To enable the deduplication and distributed storage of the data across HDFS. And then using two way cloud in our storage system is built under a hybrid cloud architecture, where a private cloud manipulates the computation and a public cloud manages the storage. The private cloud is provided with a trapdoor key associated with the corresponding ciphertext, with which it can transfer the ciphertext over one access policy into ciphertexts of the same plaintext under any other access policies without being aware of the underlying plaintext. After receiving a storage request, the private cloud first checks the validity of the uploaded item through the attached proof. If the proof is valid, the private cloud runs a tag matching algorithm to see whether the same data underlying the ciphertext has been stored. If so, whenever it is necessary, it regenerates the ciphertext into a ciphertext of the same plaintext over an access policy which is the union set of both access policies. like public cloud and private cloud. We have shown the concept of deduplication effectively and security is achieved by means of Proof of Ownership of the file. That is attribute-based storage system ciphertext-policy attribute-based encryption (CP-ABE) and supports secure deduplication

S.N	TITLE	AUTHOR	CONCEPT	YEAR	ADVANTAGE	DISADVANTAG
0						E
1	Cloud based	Prashant Bhatt1	Cloud Storage is recently as	2004	On Agile methods,	This retrieves only
	Storage Drive		emerging topic in these eras.		an experiment that	outline the
	Forensics		As the data are increasing, the		test-first nature of	contributions of
			storage become major issue		TDD and	this research for
			for the people. There are		compared it to the	understanding of
			different kind of Cloud		test-last nature of	TDD.
			Storage application such as		traditional software	
			One Drive, Sky Drive, Drop		processes.	

II. LITERATURE SURVEY

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

Volume 6 Issue II, February 2018- Available at www.ijraset.com

			Box and Google Drive. Google Drive is gaining more popularity as it is user friendly than any other Cloud Storage Application. Google Drive is a Cloud Storage Application which allows user to store, share and edit the file in the cloud.			
2	Fuzzy Identity Based Encryption	Amit Sahai.	The project introduces a new type of Identity Based Encryption (IBE) scheme that we call Fuzzy Identity Based Encryption. A Fuzzy IBE scheme allows for a private key for an identity id to decrypt a ciphertext encrypted with another identity id0 if and only if the identities id and id0 are close to each other as measured by some metric (e.g. Hamming distance). A Fuzzy IBE scheme can be applied to enable encryption using biometric measurements as identities.	2010	The system is able to detect imitation attacks, allow for the encryption of data using a biometric input.	The inherent non- determinism makes it difficult to extract a cryptographic key from a biometric input. It does not fit into the paradigm of Identity Based Encryption.
3	Message- Locked Encryption for Lock- Dependent Messages	Martin Abadi	Motivated by the problem of avoiding duplication in storage systems, Bellare, Keelveedhi, and Ristenpart have recently put forward the notion of Message-Locked Encryption (MLE) schemes which sub- sumes convergent encryption and its variants. Such schemes do not rely on permanent secret keys, but rather encrypt messages using keys de- rived from the messages themselves. We strengthen the notions of security proposed by Bellare et al. by con- sidering plaintext distributions that may depend on the public parame- ters of the schemes. We refer to such inputs as lock-dependent messages. We construct two schemes that satisfy our new notions of	2014	The system is fully randomized scheme. The inputs are lock-dependent messages.	The system uses computationally expensive NIZKs to identify all duplicate ciphertexts. The identical plaintexts are mapped only to identical ciphertexts.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

Volume 6 Issue II, February 2018- Available at www.ijraset.com

			security for message-locked encryption with lock-			
			dependent messages.			
4	Message- Locked Encryption and Secure Deduplicati on	Mihir Bellar	The system formalizes a new cryptographic primitive, Message-Locked Encryption (MLE), where the key under which encryption and decryption are performed is itself derived from the message. MLE provides a way to achieve secure deduplication (space-e cient secure outsourced storage), a goal currently targeted by numerous cloud-storage providers. We provide de nitions both for privacy and for a form of integrity that we call tag consistency. Based on this foundation, we make both practical and theoretical	2008	It has the improvement in fuel economy using DP based charge- depletion control compared to rule based control.	On the traffic flow on highway with on/off ramps which may be missed by the model which used for only main road detectors data.
5	Digital Forensic Trends and Future	Farhood Norouzizadeh Dezfoli, Ali Dehghantanha, Ramlan Mahmoud, Nor Fazlida Binti Mohd Sani, Farid Daryabar	contributions. Nowadays, rapid evolution of computers and mobile phones has caused these devices to be used in criminal activities. Providing appropriate and sufficient security measures is a difficult job due to complexity of devices which makes investigating crimes involving these devices even harder. Digital forensic is the procedure of investigating computer crimes in the cyber world. Many researches have been done in this area to help forensic investigation to resolve existing challenges. This paper attempts to look into trends of applications of digital forensics and security at hand in various aspects and provide some estimations about future research trends in this area.	2010	It maintains the privacy of the clients. It helps in exploiting security mechanism and framework rather than privacy protection techniques.	It is not so responsive to the current security trends and issues. The leakage of the issue may attract huge media attention resulting in endangering the reputation.
6	Survey on	Renjith P,	Cloud storage helps	2013	It is a simple	No access control

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

	Data Sharing	Sabitha S	enterprises and government		method of data	mechanisms are
	and Re-		agencies significantly reduce		sharing that does	implemented to
	Encryption in		their financial overhead of		not use either ABE	handle revoked
	Cloud		data management, since they		or time based	users. Owner
			can now archive their data		encryption. It	signature is
			backups remotely to third-		directly stores data	embedded in the
			party cloud storage providers		and keys in servers	data.
			rather than maintain data		as shares.	
			centers of their own. Security			
			concerns become relevant as			
			we outsource the storage of			
			possibly sensitive data to third			
			party cloud storage. Data			
			stored in cloud may be			
			unexpectedly disclosed in the			
			future due to malicious attacks			
			on the cloud or careless			
			management of cloud			
			operators. Secure data transfer			
			is needed to maintain the data			
			security between authorized			
			users. The challenge of			
			achieving secure data sharing			
			is that we have to encrypt the			
			data and at the same time it			
			should be available to those			
			authorized clients. This is			
			made possible through re-			
			encryption.			
7	Forensic	Ming Sang	Cloud storage services are	2015	The remnants of	This may enable
/	Analysis of	Chang	increasingly used by	2013	cloud activity can	investigators to
	Google Drive	Chang	consumers, business, and		be found on local	identify the
	on Windows				machines. It could	location of data.
	on whiteows		government. These services		be valuable for the	In this research,
			are fairly easy to obtain.			· · · · · · · · · · · · · · · · · · ·
			Google Drive is a popular		forensic examiners.	an investigator
			service, providing users a cost-			can identify
			effective, and in some cases			Google Drive
			free, ability to access, store,			account use by
			collaborate, and disseminate			undertaking
			data. It is difficult to identify,			keyword searches
			acquire, and preserve the			and examine test
			evidences when criminals use			files locations to
			disparate services. This study			locate relevant
			was undertaken to determine			information.
			the data remnants on a			
			Windows computer.			
			-			
8	Proxy Re-	Raghi Roy, Paul	This paper presents a survey	2015	PRE has captured a	Encoding
8	Proxy Re- encryption Schemes for	Raghi Roy, Paul P. Mathai,	-	2015	PRE has captured a lot of concern due to the delegation	Encoding operations over encrypted

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

10	Avoiding	Benjamin Zhu,	eliminating duplicate data. While deduplication is typically applied to data stored on disks, the emergence of RAM-based storage systems opens new problems on one hand while being insensitive to some inherent deficiencies of deduplication such as fragmentation. In this paper we present a review of disk- and memory-based deduplication. Disk-based deduplication	2012	workloads in mind. We notice that work on memory data deduplication is scarce and mostly focused on virtualization.	pages. Better understanding the effect of different storage APIs on deduplication.
9	Efficient Deduplication in Disk- and RAM-based Data Storage Systems	Andrej Tolic , Andrej Brodnik.	decrypt the ciphertext. Modern storage systems such as distributed file systems and key-value stores in many cases exhibit data redundancy. The issue is addressed by deduplication, a process of identifying and	2009	Most of the techniques in deduplication were developed with backup/ archival or virtualization	Subpage-level memory deduplication. Existing systems only deduplicate whole
	Secure Cloud Data And Applications: A Survey		with respect to secure cloud data and its application. To keep sensitive user data confidential against untrusted servers, cryptographic methods are used to provide security and access control in clouds. As the data is shared over the network, it is needed to be encrypted. There are many encryption schemes that provide security and access control over the network.Proxy re- encryption enables the semi-trusted proxy server to re-encrypt the ciphertext encrypted under Alice's public key to another ciphertext encrypted under Bob's public key. The re-encryption is done without the server being able to		function of decryption. PRE is also an essential technique as many real time applications.	messages is not possible. The key privacy proof is more difficult than that of CPA security

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

	1	1		
the Disk	Kai Li, Hugo	storage has emerged as the	minimizing disk	are general
Bottleneck	Patterson	new-generation storage system	I/Os to achieve	methods to
in the Data		for enterprise data protection	good deduplication	improve
Domain		to	performance match	
Deduplicati		replace tape libraries.	well against the	throughput
on File		Deduplication removes	industry trend of	performance of
System		redundant data segments to	building many-core	deduplication
		compress data into a highly	processors.	storage
		compact form and makes it		
		economical to store backups		systems.
		on disk instead of tape. A		
		crucial requirement for		
		enterprise data		
		protection is high throughput,		
		typically over 100 MB/sec,		
		which enables backups to		
		complete quickly. A		
		significant challenge is to		
		identify and eliminate		
		duplicate data segments at this		
		rate on a low-cost system that		
		cannot afford enough RAM to		
		store an index of the stored		
		segments and may be forced to		
		access an on-disk index for		
		every input segment.		
		every input segment.		

III. CONCLUSION

In this project, the new distributed de-duplication systems with file-level and fine-grained block-level data deduplication, higher reliability in which the data chunks are distributed across HDFS storage, reliable key management in secure de-duplication and the security of tag consistency and integrity were achieved.

IV. FUTURE WORK

With the goal of saving storage space for cloud storage services, first solution for balancing confidentiality and efficiency in performing deduplication called attribute-based encryption was proposed, where a message is encrypted under a message-derived key so that identical plaintexts are encrypted to the same cipher texts. In this case, if two users upload the same file, the cloud server can discern the equal cipher texts and store only one copy of them.

REFERENCES

- [1] D. Quick, B. Martini, and K. R. Choo, Cloud Storage Forensics. Syngress Publishing / Elsevier, 2014. [Online]. Available: http://www.elsevier.com/books/cloud-storageforensics/ quick/978-0-12-419970-5
- K. R. Choo, J. Domingo-Ferrer, and L. Zhang, "Cloud cryptography: Theory, practice and future research directions," Future Generation Comp. Syst., vol. 62, pp. 51–53, 2016.
- [3] K. R. Choo, M. Herman, M. Iorga, and B. Martini, "Cloud forensics: State-of-the-art and future directions," Digital Investigation, vol. 18, pp. 77–78, 2016.
- [4] Y. Yang, H. Zhu, H. Lu, J.Weng, Y. Zhang, and K. R. Choo, "Cloud based data sharing with fine-grained proxy re-encryption," Pervasive and Mobile Computing, vol. 28, pp. 122–134, 2016.
- [5] D. Quick and K. R. Choo, "Google drive: Forensic analysis of data remnants," J. Network and Computer Applications, vol. 40, pp. 179–193, 2014.
- [6] A. Sahai and B. Waters, "Fuzzy identity-based encryption," in Advances in Cryptology EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, ser. Lecture Notesin Computer Science, vol. 3494. Springer, 2005, pp. 457–473.
- [7] B. Zhu, K. Li, and R. H. Patterson, "Avoiding the disk bottleneck in the data domain deduplication file system," in 6th USENIX Conference on File and Storage Technologies, FAST 2008, February 26-29, 2008, San Jose, CA, USA. USENIX, 2008, pp. 269–282.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

Volume 6 Issue II, February 2018- Available at www.ijraset.com

- [8] M. Bellare, S. Keelveedhi, and T. Ristenpart, "Message-locked encryption and secure deduplication," in Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, ser. Lecture Notes in Computer Science, vol. 7881. Springer, 2013, pp. 296-312.
- [9] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev, "Message-locked encryption for lock-dependent messages," in Advances in Cryptology -CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 8042. Springer, 2013, pp. 374-391.
- [10] S. Keelveedhi, M. Bellare, and T. Ristenpart, "Dupless: Serveraided encryption for deduplicated storage," in Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013. USENIX Association, 2013, pp. 179–194.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)