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Abstract: In this paper, we discussed the notion of fuzzy soft graph and concepts of homomorphism, isomorphism, weak
isomorphism, self-weak isomorphism of fuzzy soft graphs. Also some properties of isomorphism on fuzzy soft graphs, self-
complementary and self-weak complementary fuzzy soft graphs are discussed.
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L. INTRODUCTION

The concept of fuzzy set theory was introduced by zadeh. A [1]. This concept have potential application in various fields such as the
smoothness of functions, medical and life sciences, social sciences, Engineering graph theory, artificial intelligence, robotics,
computer, networks, decision making and automata theory. The concept of fuzzy soft sets with is a new mathematical tool was
firstly introduced by Maji et al [2]. They presented the definition of fuzzy soft sets and investigated some properties at this notion.
Therefore many researchers have applied this concept on different branches. In 1975, Rosenfeld [8] introduced the concept of fuzzy
graphs. Therefore many researchers have generalized the different notions of graph theory using the notions of fuzzy sets. P.
Bhattacharya in [3] showed that a fuzzy graph can be associated with a fuzzy group in a natural way as an automorphism group.
K.R. Bhutani in [4] introduced the concept of weak isomorphism and isomorphism between fuzzy graphs. In this paper we define
the concept of homomorphism, isomorphism, weak isomorphism, self weak isomorphism of fuzzy soft graph. We also study some
of their important properties.

1. PRELIMINARIES
In this section ,We recall some basic notion of graph ,fuzzy graph, soft graph and fuzzy soft graphs

A. Definition:2.1
A graph G = (V, E) consists of a non-empty set of objects V called vertices and a set E of two element subset of V called edges.

B. Definition:2.2[5]
Let V be a non-empty finite set u: V — [0, 1] and v =VxV - [0, 1].If v(x, ¥) < u (X) A u(y) for all x, y € V. Then the pair G =(1,v)
is called a fuzzy graph over the set V. Here p and v are called fuzzy vertex and fuzzy edge of the fuzzy graph (u, v).

C. Definition:2.3[6]
Let (F, A) be a soft set over V. Then (F, A) is said to be a soft graph of G if the subgraph induced by F(x) in G. F(x) is a connected
subgraph of G for all x € A.

D. Definition:2.4
A fuzzy soft graph G = (G*, F, K, A) is a 4 tuple such that

(i) G*=(V, E)isasimple graph

(i) A is a nonempty set of parameters
(iii) (F,A) isa fuzzy soft set over V.
(iv) (K, A) is a fuzzy soft set over E.

(v) (F (a), K (a)) is a fuzzy (sub) graph of G*,  for all a €A.
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That is K (a) (xy) < min {F(a)(x), F(a)(y)} foralla € A, x, y € V. The fuzzy graph (F(a), K(a)) is denoted by H (a) for
convenience.

On the other hand, a fuzzy soft graph is a parameterized family of fuzzy graphs. The class of all fuzzy soft graphs of G* is denoted
by F(G*).

E. Definition:2.5

Let G, = (G*F,, K;, A) and G, = (G*,F,,K,, A) be two fuzzy soft graphs. A homomorphism f: G, — G, is a mapping f: Vi~ V,
which satisfies the following conditions.

() Fi () (¢) < F; (3)(f(x))
(i) K @Ky) <K (@) Ff(y) forallacA, x yeVi xy€eE.

F. Definition:2.6
Let G, = (G* F,, K7, A) and G, = (G*, F,, K, A) be two fuzzy soft graphs. An isomorphism
f:G, - G, is a Bijective mapping f : V;— V, which satisfies the following conditions.

() Fi (@) (X) = F2 (a (f(x))
(i) Ku@)xy) = Ko@)(f(x)f(y)) forall a€A, x,yeVy, xy€eE

G. Definition:2.7
Let G, = (G* F,,K;, A) and G, = (G*, F,, K, A) be two fuzzy soft graphs. Then a weak isomorphism
f:G, - G, is a bijective mapping f : ;= V, which satisfies the following conditions.

(1) f is homomorphism
(i) Fi(@) X) =F, (@) (f(x)) forall aeA, x€eV,

H. Definition:2.8
Let G, = (G* F;, Ky, A) and G, = (G*F,, K;, A) be two fuzzy soft graphs. A Self Weak Isomorphism
f:G, - G, isabijective mapping f: V;— V, which satisfies the following conditions.

(1) f is homomorphism
(i) K (@)(xy) = K, (a) (f(x)f(y)) foralla€A, x,y€V,, xy€eE.

1. SELF COMPLEMENTARY FUZZY SOFT GRAPHS
A. Definition:3.1
A fuzzy soft graph G is self complementary if G= G’ where G’ is the complement of fuzzy soft graph G.

B. Theorem :3.1
If G = (G*, F, K, A) be a self complementary fuzzy soft graph then

=3 (@) (y) < 5 - F min[ (F(a) (%), F(a) ()]

Proof:
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Let G = (G*, F, K, A) be a self complementary fuzzy soft graph. Where G, is a finite set. Then there exists an
isomorphism f:G; — G, is a mapping f: Vi~ V,

E@ () =F (@) (x) = F () (f() (3.11)

R:® @) () = K () (xy) = K (a) (F(x) F()) (312)
By definition of complement of fuzzy soft graph,
K@ (y) =@ () AR @) %) K5 @ (09 f(y)
By using (3.1.1) and (3.1.2) we get,
Rz (8) (xy) =F; (8) ) AR, (a) (y) —FK; (3) (FOQ) f(y))
K7 (8) (xy) + K (@) (F0) ) = 7 (@) () ARy (@) ()
again using (3.1.1) and (3.1.2) we get,
R: (@) () +K; @)(xy) = F (3) (%) AR, (@) (9)
= 2K, (@) (xy) = F; (8) (%) AF; (a) (y)
=K1 @) () = F; (@) ) AR (@) ()
similarly, we have
T K @ () =5 -Imin[F @) (), F (@) 0]
In general,

2K (a) (xy) < %x=§ min[ (F(a) (x), F(a) (y))] . Hence G be a self complementary fuzzy soft graph.

C. Definition:3.2
A fuzzy soft graph G is self weak complementary if G is weak isomorphic with G¢, where G® is the complement of fuzzy soft
graphG.

Fi (@) (9 = F; (a) (f(x)) (3.2.1)

K; (a) (xy) =K;° (a) (f(x) f(¥)) (3.2.2)

D. Theorem3.2.1
Let G = (G*, F, K, A) be a self weak complementary fuzzy soft graph then

=31 (8) () < 2 e [F1 () 09 AR (@) ()]

1) Proof: Let G = (G*, F, K, A) be a self weak complementary fuzzy soft graph. Then there exists a weak isomorphism f :V;—
V,such that f(x) = x, and  K;(a) (xy) < K;© (a) (f(x) f(y))

By definition of complement of fuzzy soft graph

Ki® (@) (f00), 7)) =F1 (@) (f(x)) AF; (@)(f¥) - Kr(a )(F(x), F(v) (3.2.3)
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By using (3.2.2) in (3.2.3),we have,

Ki(a) (xy) < F; (@)(f()) AR (2) (fy)-Ki(2) (F(x) f(y))
By using (3.2.1) in (3.2.3) we have,

Ki(@) ()< Fy @) AF; (@) (v) —K1(@) [f(x) f(y)]
Ki(a) (xy) +K; (a)(f(x) f(y) < F; (a) (AF; (3) (y)
Similarly, we have

x=yK1(2) (Xy) +,=3K1(3) (f(x) f(y)) < Xy [F1(2) ) AFi(a ()] (3.2.4)

By using (3.2.2) in (3.2.4),we have,

K@) () + 23K @) () < T, [F (@) AF; (@) ()]
2 ,3K(@) () < 2R (@) AR (@)(3)]

2K (@) () <5 2[R (@) (), AR (@O)]

Hence G is a self weak complementary fuzzy soft graph.

by equation (3.2.5))
K (@) (f(2), f(y)) >3 (F1 (a) (%) F; () )]
> 2K (@) (xy) I xy e Identity map.

ie, 3K @ y) <K (a) (f(x), f(¥)) (3.2.8)

From (3.2.6) and (3.2.8) Gis weak isomorphic with G° therefore G is a self weak complementary fuzzy soft graph.

V. CONCLUSION
Fuzzy soft graph theory is an extremely useful tool in solving the combinational problems in different areas. In this paper we gave
some new concepts such as weak isomorphism, self weak complementary fuzzy soft graph and studied some at their properties.
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