

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: III Month of publication: March 2018

DOI: http://doi.org/10.22214/ijraset.2018.3655

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

A Utility based Approach towards the Multi Objective Optimization during Turning of AISI D3 Steel using Various Bio Degradable Cutting Fluids

R.K. Suresh

Assistant Professor (Sr), Department of Mechanical Engineering, Sri Kalahasteeswara Institute of Technology, Srikalahasti, India

Abstract: Green manufacturing in combination with minimum quantity lubrication is a method where in products are manufacture by consuming less natural resources and being safe to operators, environment and society as the cutting fluid used is bio-degradable. This paper envisages an experimental investigation that compares the machining characteristics when castor oil, palm oil and ground nut oil are used as cutting fluids during turning of AISI D3 steel by using DNMG, TNMG and CNMG styled CVD coated inserts. The result of the study compares the responses such as surface roughness, material removal rate and specific energy by considering single response as well as multi responses (Utility concept) and provides the basis for the adequacy for the utility approach

Keywords: Minimum quantity lubrication, cutting fluids, AISI D3 steel, CVD inserts, surface roughness, material removal rate, specific energy

I. INTRODUCTION

Quality and productivity are two important, but contradictory parameters which prevails in manufacturing. Quality mainly concerns with dimensional accuracy where as productivity is a direct measure of material removal rate during machining. Minimizing cutting force is also important which affects tool wear. Also power consumed is directly related to cutting force. Specific energy is the ratio of power consumed to material removal rate. For a effective machining specific energy need to be at lowest level. Hence it becomes essential to evaluate the optimum cutting parameters setting in order to satisfy the requirements of quality and productivity. The proper application of cutting fluid provides higher cutting speeds and higher feed rates possible. The selection of cutting fluid not only improves cutting performance but also fulfils a number of requirements which are non-harmful to health for operators, not a fire hazard, no smoke (or) for and cost is less. Cutting fluids are applied at the cutting zone to improve cutting performance. The primary function of cutting fluid is to reduce interface temperature between tools and work thus tool lip will be extended. Secondary cutting fluid acts as good lubricant by which heat generated due to friction will be reduced. To conclude with high lubricant capacity are suitable in low speed machining such as screw cutting, broaching, gear cutting and difficult to cut materials whereas cutting fluids with high cooling ability are generally employed in high speed machining. In the present work, AISI D3 steel was selected as work material which finds applications in the manufacture of Blanking & Forming dies, press tools, punches, bushes, forming rolls and many more. For the purpose of experimentation, factorial design experiments are considered as per Taguchi DOE. By advocating Taguchi design, a clear understanding of the nature of variation and economic consequences of quality engineering in the world of manufacturing can be clearly got through. In the present study, Taguchi based utility approach was performed to combine the multiple performance characteristics in to one numerical score which is an indicative of the optimal process parameter setting. Analysis of variance (ANOVA) is also performed to investigate the most influencing parameters on the surface roughness, material removal rate and specific energy.

Hari singh and Pradeep kumar [1] used utility concept coupled with Taguchi method for optimizing multiple quality characteristics during turning of En 24 steel. Surinder et al [2] presents a case study for optimizing multi-response in turning using Taguchi design approach in conjunction with utility concept for GFRP composite material with the help of carbide(K10) cutting tool. Yogendra kumar and Hari singh [3] used Taguchi design of approach and utility concept to optimize multiple performance characteristics namely axial force, radial force, main cutting force and material removal rate during dry turning of En- 47 steel. The optimal values obtained using multi characteristics optimization model is validated by confirmation experiments. Sunil Hansda and Simul Banerjee [4] used utility concept with Taguchi approach in optimizing multi characteristics in drilling of CFRP composite. Experiments were conducted based on Taguchi L9 orthogonal array. Analysis was performed based on utility method varying the importance of quality characteristics in drilling process. Antony [5] proposed a methodology to develop a simple and practical step by step

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue III, March 2018- Available at www.ijraset.com

approach for tackling multi responses or effects and also for determining the optimal condition of the process. Kaladhar et al [6] in his work applied a multi characteristics response optimization model based on Taguchi and utility concept to optimize process parameters such as speed, feed, depth of cut and nose radius on multiple performance characteristics namely surface roughness and material removal rate during turning of AISI 202 austenitic stainless steel using CVD coated cemented carbide tool. Taguchi L18 AO is selected for planning. The experimental results analysis showed that the combination of higher levels of cutting speed, depth of cut and nose radius and lower level of feed is essential to achieve simultaneous maximization of material removal rate and minimization of surface roughness. ANOVA and F-test are conducted and results are found to be with in confidence interval. Singaravel et al [7] estimated optimal machining parameters using Taguchi based utility concept coupled with principle component analysis(PCA) on turning of En 25 steel with CVD and PVD coated carbide tools. PC is adopted to find weight factors involved for all objectives,. Finally, ANOVA concept is employed on multi SN ratios to find relative significance of machining parameters in term of percentage contribution. Waghmare et al [8] presents utility concept along with the Taguchi methodology to optimize the RSW machine setting for multiple quality characteristics. Taguchi's modified L19 OA is used for experimentation along with using logarithmic scale for getting performance value and weightages is provided to each quality characteristics as per customer requirement to determine overall utility. Ajay Mishra and Anshul Gangela [9] investigated the multi objective optimization for the turning process of AISI 1045 steel cylindrical bar to yield the minimum tool flank wear width, surface roughness and roundness through the combination of Taguchi method and utility concept. Finally confirmation tests were conducted for validation purpose. Papiya Bhowmik et al [10] focused on the experimental investigation in to the role of green manufacturing on surface roughness in the machining of Aluminium AA 1050. A comparison is made under various cutting conditions using mineral oil, sun flower oil and coconut oil using the principle of minimum quantity lubrication. The results shown that vegetable oil performance is comparable to that of mineral oil machining and has potential to mineral oil with vegetable oil. With the consideration of all the view points from the literature survey, the present work employs utility concept along with Taguchi methodology to optimize multi quality characteristics during turning of AISI D3 steel in combination with CVD coated tool inserts with different styles using castor oil, palm oil and ground nut oil as cutting fluids.

II. EXPERIMENTATION

In the present study, five turning parameters were selected with three levels as shown in Table.1. The experimentation was carried out using L27 orthogonal array based on Taguchi design of experiments. The work material selected for this experiment is AISI D3 steel of 40 mm diameter, length 100 mm. The chemical composition of AISI D3 steel has been done by chemical Analyzer and is reported as below in Table1and process parameters and its levels is shown in Table 2 and experiment data in Table 3

	TABLE1 Chemical Analysis report							
Element	С	Si	Mn	Р	S	Cr	V	W
Specified values	2.00-2.35	0.10-0.60	0.10-0.60	0.03 max	0.03 max	11.00- 13.50	1.00 max	1.00 max
Observed values	2.07	0.406	0.457	0.02	0.029	11.28	0.037	< 0.003

TABLE 2 Process parameters and its levels						
Process parameters	Designation	Level 1	Level 2	Level 3		
Insert style	А	DNMG	TNMG	CNMG		
Cutting fluid	В	Castor oil	Palm oil	Ground nut oil		
Cutting speed (m/min)	С	100	150	200		
Feed(mm/rev)	D	0.05	0.07	0.09		
Depth of cut(mm)	E	0.10	0.15	0.20		

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

(1)

Volume 6 Issue III, March 2018- Available at www.ijraset.com

Expt	Insert	Cutting	Cutting	Feed	Doc(mm)	Surface	Material	Specific
No	Style	fluid	speed(m/min)	(mm/rev)		roughness(µm)	removal	Energy
							rate(mm ³ /sec)	(J/mm^3)
1	DNMG	СО	100	0.05	0.10	0.268	55.190	36.445
2	DNMG	СО	100	0.05	0.15	0.738	80.909	26.675
3	DNMG	СО	100	0.05	0.20	1.113	116.664	19.441
4	DNMG	PO	150	0.07	0.10	0.336	73.896	32.177
5	DNMG	РО	150	0.07	0.15	0.680	138.459	18.229
6	DNMG	РО	150	0.07	0.20	0.854	177.686	14.823
7	DNMG	GO	200	0.09	0.10	0.184	206.897	14.145
8	DNMG	GO	200	0.09	0.15	0.452	263.404	1.666
9	DNMG	GO	200	0.09	0.20	0.596	349.252	9.112
10	TNMG	CO	150	0.09	0.10	0.232	126.373	19.394
11	TNMG	СО	150	0.09	0.15	0.582	180.543	14.791
12	TNMG	СО	150	0.09	0.20	0.682	260.220	10.824
13	TNMG	РО	200	0.05	0.10	0.432	114.151	24.035
14	TNMG	РО	200	0.05	0.15	0.648	158.305	18.024
15	TNMG	РО	200	0.05	0.20	0.878	194.311	15.249
16	TNMG	GO	100	0.07	0.10	0.322	44.159	42.248
17	TNMG	GO	100	0.07	0.15	0.510	60.537	32.631
18	TNMG	GO	100	0.07	0.20	0.568	88.332	24.848
19	CNMG	СО	200	0.07	0.10	0.567	146.216	19.765
20	CNMG	СО	200	0.07	0.15	0.728	216.592	14.018
21	CNMG	СО	200	0.07	0.20	1.047	282.822	11.123
22	CNMG	РО	100	0.09	0.10	0.334	76.273	25.419
23	CNMG	РО	100	0.09	0.15	0.438	111.533	19.023
24	CNMG	РО	100	0.09	0.20	0.690	140.177	15.926
25	CNMG	GO	150	0.05	0.10	0.448	61.848	37.854
26	CNMG	GO	150	0.05	0.15	0.526	105.896	23.489
27	CNMG	GO	150	0.05	0.20	0.700	135.025	19.235
	1			1	1	L	l	L

TABLE 3 Experimental data and results for 3 parameters, corresponding Ra, MRR and Specific energy for CVD tool

"The turning tests were carried out on Kirloskar model centre lathe machine to determine the responses characteristics for various runs of experiment. Surface roughness is measured using "SJ 201-P" surface roughness measuring instrument.

The material removal rate (mm³/sec) is calculated using formula:

MRR =
$$[\pi/4(D_1^2 - D_2^2) L]/t$$
 mm³/sec

Where, $D_1 = Diameter$ of the work piece before turning.mm

- D_2 = Diameter of the work piece after turning.mm
- L = Length of turning, mm
- t = Machining time, sec

Specific energy is obtained by considering the ratio between Power consumed and material removal rate. Power consumed is measured by using Watt meter fitted to lathe machine.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue III, March 2018- Available at www.ijraset.com

III. METHODOLOGY

A. Entropy approach for weight determination

Entropy method is one of the well-known and widely used methods to calculate the criteria of decision weights [11]. Decision weights increases the importance of criteria and is usually categorized into two types. One is subjective weight which is determined by the knowledge and experience of experts or individuals, and the other is objective weight which is determined mathematically by analyzing the collected data. Here, it is an objective weighting method.

B. Utility concept

Quality is the key attribute which dictates customer satisfaction. Hence manufacturer attempts to produce a product by considering number of quality characteristics in to consideration. To able to make a rational choice, these performance evaluation on different characteristics are combined to give a composite index. Such a composite index shows the utility of the product. In this paper it is assumed that the over- all utility of a product is the total sum of utilities of each particular quality characteristics of a product. Proper weightages need to be given to each response characteristics and sum of the weighted response characteristics will signifies the overall utility. Thus if xi is the measure of effectiveness of i^{th} process response characteristic and n represents number of responses, then the overall utility function can be written as[12]:

 $U(x_1, x_2, x_3, \dots, \dots, x_n) = f[U_1(x_1), U_2(x_2), \dots, \dots, U_n(x_n)]$

Where Ui(xi) is the utility of the i^{th} attribute

The overall utility function is the sum of individual utilities. If the attributes are independent. Then,

 $U(x_1, x_2, x_3, \dots, \dots, x_n) = \sum_{i=1}^n Wi Ui(x_i)$

Where W_i is the weight assigned to the attribute *i* and the total sum of the weights for all the attributes is equal to one

$$\sum_{i=1}^{n} Wi = 1$$

IV. RESULTS AND ANALYSIS

The objective of the present work is to minimize surface roughness & specific energy and maximize material removal rate. In the present work, a multi response methodology based on Taguchi technique and utility concept is used for optimizing the multi-response characteristics Taguchi proposed many different possible S/N ratios to obtain the optimum parameter setting [13]. Two of them are selected for the present work. Those are

Smaller the better S/N ratios for R_a (surface roughness) and SE (specific energy)

 $[\eta_1] = -10 \log_{10}(R_a^2)$

 $[\eta_2] = -10 \log_{10}(SE^2)$

Larger the better S/N ratio for MRR (material removal rate)

 $[\eta_3] = -10 \log_{10}(1/MRR^2)$

From the utility concept, the multi-response S/N ratios of the overall utility value is given by

 $\eta_{abs} = \eta_1 W_1 + \eta_2 W_2 + \eta_3 W_3$

where W_1 , W_2 and W_3 are weights assigned to the Ra, MRR and SE, The weights are evaluated by using Entropy method, Therefore $W_1 = 0.278$, $W_2 = 0.447$ & $W_3 = 0.275$

A Determination of optimal range for surface roughness, material removal rate and specific energy at single response From mean table for surface roughness, the optimal setting is found at insert style at level 2, cutting fluid at level 3, cutting speed at level 1, feed at level 3 & depth of cut at level 1

 $\mu_{SR}=0.1757$

Hence predicted value of experimental data for surface roughness is $0.0757 \,\mu m$

Confidence interval for predicted optimum experimental data on a confirmation run can be calculated using

$$C.I = \sqrt{F\alpha(1, fe)Ve[\frac{1}{\eta eff} + \frac{1}{R}]}$$
(1)

Where $F\alpha(1, fe) = F$ ratio required for α , $\alpha = risk$, fe = residual error, Ve = error variance, $\eta eff = effective number of replications = N(1 + total DOF associated in the estimated of mean)$

R = number of repetitions for confirmation experiment, N = total number of experiments

The specific values are required in (1) are: fe = 16, Ve = 0.01004, N = 27, R = 1,

$$F0.05(1,16) = 4.49, C.I = \pm 0.25188$$

The predicted optimal range (for a confirmation run) of surface roughness is:

 $-0.17618 < \mu SR < 0.32758$

From mean table for material removal rate, the optimal setting is found at insert style at level 1, cutting fluid at level 1, cutting speed at level 3, feed at level 3 & depth of cut at level 3

 $\mu_{MRR} = 336.823$

Hence predicted value of experimental data for material removal rate is 336.823 mm3/sec -

Confidence interval for predicted optimum experimental data on a confirmation run can be calculated using

$$C.I = \sqrt{F\alpha(1, fe)Ve[\frac{1}{\eta eff} + \frac{1}{R}]}$$
(1)

Where $F\alpha(1, fe) = F$ ratio required for α , $\alpha = risk$, fe = residual error, Ve = error variance, $\eta eff = effective number of replications = N/(1 + total DOF associated in the estimated of mean)$

R = number of repetitions for confirmation experiment, N = total number of experiments

The specific values are required in (1) are: fe = 16, Ve = 369.0151, N = 27, R = 1,

$$F0.05(1.16) = 4.49, C.I = \pm 48.2899$$

The predicted optimal range (for a confirmation run) of material removal rate is:

$$288.533 < \mu MRR < 385.113$$

From mean table for specific energy the optimal setting is found at insert style at level 1, cutting fluid at level 1, cutting speed at level 3, feed at level 3 & depth of cut at level 3

 $\mu_{SE}=1.578$

Hence predicted value of experimental data for specific energy is 1.578 J/mm3

Confidence interval for predicted optimum experimental data on a confirmation run can be calculated using

$$C.I = \sqrt{F\alpha(1, fe)Ve[\frac{1}{\eta eff} + \frac{1}{R}]}$$
(1)

Where $F\alpha(1, fe) = F$ ratio required for α , $\alpha = risk$, fe = residual error, Ve = error variance, $\eta eff = effective number of replications = N/(1 + total DOF associated in the estimated of mean)$

R = number of repetitions for confirmation experiment, N = total number of experiments

The specific values are required in (1) are: fe = 16, Ve = 7.9061, N = 27, R = 1,

 $F0.05(1.16) = 4.49, C.I = \pm 7.068$

The predicted optimal range (for a confirmation run) of specific energy is:

 $-5.49 < \mu SE < 8.646$

A. Analysis of single response characteristic

The optimal setting for surface roughness, material removal rate and specific energy are determined individually by Taguchi's approach. Table 4 shows the individual optimal values and corresponding setting of the process parameters. Further the ANOVA is used to determine the percentage contribution made by each process parameters on the individual target. Tables 5, 6 & 7 reveal the results of ANOVA

TABLE 4 Individual optimal values and its corresponding settings of the process parameters

Performance characteristics	Optimum parameter level	Predicted optimum level
Surface roughness	A2B3C1D3E1	0.1757µm
Material removal rate	A1B1C3D3E3	336.823 mm ³ /sec
Specific energy	A1B1C3D3E3	1.578 J/mm ³

Table 5 ANOVA results for surface roughness

Source	DOF	Sum of squares	Mean sum of squares	F-ratio	Percent contribution
А	2	0.02604	0.01302	1.2967	1.8579
В	2	0.14424	0.07212	7.1826	10.2915
C	2	0.02229	0.01114	1.1095	1.5904
D	2	0.17801	0.08900	8.8636	12.7005
Е	2	0.87031	0.43516	43.338	62.0968
Error	16	0.16066	0.01004		11.4628
Total	26				100.000

TABLE 6 ANOVA results for Material removal rate

Source	DOF	Sum of squares	Mean sum of squares	F-ratio	Percent contribution
А	2	3424.939	1712.4695	4.6406	2.1939
В	2	4387.500	2193.750	5.9448	2.8105
С	2	75167.44	37583.720	101.848	48.1502
D	2	28074.300	14037.15	38.039	17.9836
Е	2	39151.840	19575.920	53.0491	25.07961
Error	16	5904.241	369.0151		3.7821
Total	26				100.0000

TABLE 7 ANOVA results for Specific energy

Source	DOF	Sum of squares	Mean sum of squares	F-ratio	Percent contribution
А	2	23.9156	11.9578	1.5125	1.1918
В	2	110.4176	55.2088	6.9831	5.5025
С	2	618.6326	309.3163	39.1238	30.8289
D	2	421.2761	210.6381	26.6425	20.9938
Е	2	705.9272	352.9636	44.6445	35.1791
Error	16	126.4973	7.9061		6.3039
Total	26				100.0000

B. Determination of optimal range for all the response characteristics when considered simultaneously by considering utility concept

From mean response graphs for multi response utility value, the optimal setting is found at insert style at level 1, cutting fluid at level 1, cutting speed at level 3, feed at level 3 & depth of cut at level 3

$$\mu_{SR}=0.7373$$

Hence predicted value of experimental data for surface roughness is 0.7373 μm

Confidence interval for predicted optimum experimental data on a confirmation run can be calculated using

 $C.I = \sqrt{F\alpha(1, fe)Ve[\frac{1}{\eta eff} + \frac{1}{R}]}$

Where $F\alpha(1, fe) = F$ ratio required for α , $\alpha = risk$, fe = residual error, Ve = error variance, $\eta eff = effective number of replications = N(1 + total DOF associated in the estimated of mean)$

R = number of repetitions for confirmation experiment, N = total number of experiments

The specific values are required in (1) are: fe = 16, Ve = 0.01004, N = 27, R = 1,

 $F0.05(1.16) = 4.49, C.I = \pm 0.25188$

The predicted optimal range (for a confirmation run) of surface roughness is:

$$0.4854 < \mu SR < 0.9892$$

From mean response graphs for multi response utility value, the optimal setting is found at insert style at level 1, cutting fluid at level 1, cutting speed at level 3, feed at level 3 & depth of cut at level 3

 $\mu_{MRR} = 336.823$

Hence predicted value of experimental data for material removal rate is 336.823 mm3/sec

Confidence interval for predicted optimum experimental data on a confirmation run can be calculated using

$$C.I = \sqrt{F\alpha(1, fe)Ve[\frac{1}{\eta eff} + \frac{1}{R}]}$$

Where $F\alpha(1, fe) = F$ ratio required for α , $\alpha = risk$, fe = residual error, Ve = error variance, $\eta eff = effective number of replications = N(1 + total DOF associated in the estimated of mean)$

R = number of repetitions for confirmation experiment, N = total number of experiments

The specific values are required in (1) are: fe = 16, Ve = 369.051, N = 27, R = 1,

 $F0.05(1.16) = 4.49, C.I = \pm 48.2899$

The predicted optimal range (for a confirmation run) of material removal rate is:

$$288.533 < \mu MRR < 385.113$$

From mean response graphs for multi response utility value, the optimal setting is found at insert style at level 1, cutting fluid at level 1, cutting speed at level 3, feed at level 3 & depth of cut at level 3

 $\mu_{SE}=1.578$

Hence predicted value of experimental data for material removal rate is 1.578 J/mm3

Confidence interval for predicted optimum experimental data on a confirmation run can be calculated using

$$C.I = \sqrt{F\alpha(1, fe)Ve[\frac{1}{\eta eff} + \frac{1}{R}]}$$

Where $F\alpha(1, fe) = F$ ratio required for α , $\alpha = risk$, fe = residual error, Ve = error variance, $\eta eff = effective number of replications = N(1 + total DOF associated in the estimated of mean)$

R = number of repetitions for confirmation experiment, N = total number of experiments

The specific values are required in (1) are: fe = 16, Ve = 7.9061, N = 27, R = 1,

 $F0.05(1.16) = 4.49, C.I = \pm 7.0680$

The predicted optimal range (for a confirmation run) of surface roughness is:

$$-5.691 < \mu SE < 7.068$$

Source	DOF	Sum of squares	Mean sum of squares	F-ratio	Percent contribution			
A	2	3.6304	1.8152	3.8045	1.7688			
В	2	2.4736	1.2368	2.5922	1.2052			
C	2	98.9167	49.4584	103.659	48.1925			
D	2	75.0103	37.5052	78.607	36.5452			
Е	2	17.5884	8.7942	18.432	8.5691			
Error	16	7.6339	0.47712		3.7193			
Total	26				100.0000			

TABLE 8 ANOVA results for multi response considering utility value

C. Confirmation experiment

The confirmation experiment is performed at the optimal setting of turning process parameters of utility data. The following values were obtained at condition A1 - B1 - C3 - D3 - E3

 $Surface\ roughness \quad = 0.7044\ \mu m$

Material removal rate = $353.323 mm^3/sec$

Specific energy = $2.367 \ I/mm^3$

Comparison of results between single and multi objective optimization

The summary of results and comparison are reported in Table 9

TABLE 9 Summary and comparison of results

Method	Characteristics	Optimal condition	optimal predicted value
Single characteristics	Surface roughness	A2B3CID3E1	0.1757 µm
Optimization	Material removal rate	A1B1C3D3E3	$336.823 \text{ mm}^3/\text{sec}$
	Specific energy	A1B1C3D3E3	1.578 J/mm ³
Multi objective	Surface roughness,		0.7373 μm
Optimization	Material removal rate	A1B1C3D3E3	336.823 mm ³ /sec
(utility method)	& Specific energy		1.578 J/mm ³

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue III, March 2018- Available at www.ijraset.com

V. CONCLUSIONS

- A. For a single objective optimization using Taguchi analysis, optimality condition has been found by considering mean values. The optimal predicted values for surface roughness is 0.1757µm, material removal rate 336.823 mm³/min and specific energy 1.578 J/mm³. And all these values are well with- in optimal range.
- *B.* In single objective optimization, from ANOVA results it is found that depth of cut signifies most (62.09%) followed by feed (12.70%) for surface roughness. For material removal rate, cutting speed has got greater contribution (48.15%) followed by depth of cut (25.08%) and for specific energy, depth of cut signifies most (35.18%) followed by cutting speed (30. 83%)
- C. For multi objective optimization using utility concept, an optimality condition has been found and optimal predicted values are: Surface roughness 0.7373 µm, material removal rate 336.823mm³/sec, Specific energy 1.578 J/mm³. Also confirmatory experimental values are found at Surface roughness 0.7044 µm, material removal rate 353.323 mm³/sec, Specific energy 2.367 J/mm³. Also it is found that the deviation percentage between optimal predicted value and confirmatory experimental values are well with-in 5%. Hence the utility model is checked and validated
- D. In multi objective optimization, from ANOVA results it is found that cutting speed signifies most(48.19%) followed by feed(36.54%), depth of cut(8.57%)

REFERENCES

- [1] Hari singh and Pradeep kumar (2006), Optimizing multi machining characteristics through Taguchi approach and utility concept, Journal of manufacturing technology management, Vol 17, Issue 2, pp 255-274
- [2] Surinder kumar, Meenu, Satsangi P S (2013), Multi response optimization of turning by the Taguchi method and utility concept using uni directional glass fiber- reinforced plastic composite and carbide(K10) cutting tool. Journal of mechanical science and technology, 27, 2829-2837
- [3] Yogendra kumar and Hari singh(2014), Multi response optimization in dry turning process using Taguchi's approach and utility concept, Procedia material science 5(2014) 2142-2151
- [4] Sunil Hansda and Simul Banerjee(2014), Optimizing multi characteristics in drilling of GFRP composite using utility concept with Taguchi's approach, Procedia, Material science(2014) 1476-1488
- [5] Antony J(2001), Simultaneous optimization of multiple quality characteristics in manufacturing processusingTaguchi's quality loss function,International journal of advanced manufacturing technology. 17,134-138134-138
- [6] M. Kaladhar, K V Subbaiah, Ch. Srinivasa Rao and k.Narayana Rao(2011), Application of Taguchi approach and utility concept in solving the multi objective problem when turning AISI 202 austenitic stainless teel, Journal of engineering science and technology 4(1) (2011) 55-61
- [7] B. Singaravel, T. Selvaraj and R.Jeypaul(2014), Multi objective optimization on turning of En 25 steel using Taguchi based utility concept coupled with principle component analyis, Procedis engineering 97(2014) 158-165.
- [8] A.C Waghmare, P.M Padole and R.D Askhedha(2011), Multi objective optimization of setting of RSW machine through Taguchi method using utility concept, Industrial engineering journal, Vol 92, 00 38-43, 2011
- [9] Ajay Mishra, Anshul Gangela(2013), Multi objective optimization in truing of cylindrical bars of AISI 1045 steel through Taguchi's method and utility concept, International journal of science: Basic and applied research, Vol 12, No1. Pp 28-36, 2013
- [10] Papiya Bhowmik, Ujjwal kumar and Gaurav Arora(2015), Vegetable oil based cutting fluids green and Sustainable machining-I, journal of material science and mechanical engineering, vol. 2, no. 9, April-June, 2015 1-5.
- [11] S. Ding and Z. Shi(2005), Studies on incident pattern recognition based on information entropy", Journal of Information Science, vol. 31, no. 6, (2005), pp. 497-294.
- [12] Derek W.B (1982) , Analysis for optimal decisions, John Wiley & Sons, New York
- [13] P.J. Ross (1996), Taguchi techniques for quality engineering , Ms-Graw -Hill Book Company

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)