
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

A Note on an Upper Bound for $B_{s_{q}}(\mathbf{n}, \mathbf{d})$

Dr.M.Mary Jansi Rani ${ }^{1}$, P.Komalavalli ${ }^{2}$
${ }^{1}$ Head \& Assistant Professor,Department of mathematics, Thanthai Hans Roever college,Perambalur.
${ }^{2}$ Assistant Professor, Department of Mathematics, Thanthai Hans Roever College,Perambalur.

Abstract: In this correspondence, we have to obtain an upper bound for the value of $B_{q}(n, d)$, we have related to the bounds on the number of code words in a linear code Cof length n. In particular we have given the exact inequality for $B_{q}(n, d)$.
Keywords: Minimum distance, upper bound, minimum Hamming distance, lower bound.

I. INTRODUCTION

Let f_{q} be a field having q elements, where $q=P^{m}$ (P a prime and $\mathrm{m} \geq 1$). A linear code C of dimension k is a subspace of the vector space $\mathrm{f}_{\mathrm{q}}{ }^{\mathrm{n}}$ over f_{q}. C contains n elements which are n -tuples $\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right) ; x_{i} \in \mathrm{f}_{\mathrm{q}}, \mathrm{i}=1$ to n$)$ and elements. The elements of C are called code words of length n . The distance between two code words is define as follows.

First, the Hamming weight of a vector $\bar{u}=u_{1}, u_{2}, . . u_{n}$ is the number of non-zero u_{1} in \bar{u} written $w t(\bar{u})$.
Secondly, the Hamming distance between two vectors $\bar{u}=u_{1}, u_{2}, \ldots u_{n}$ and
$\bar{v}=v_{1}, v_{2}, \ldots v_{n}$ is the number of places where co-ordinates of \bar{u} and \bar{v} differ and it is denoted by $d(\bar{u}, \bar{v})$.
Evidently, $d(\bar{u}, \bar{v})=w t(\bar{u}-\bar{v})$ as $\mathrm{f}_{\mathrm{q}}{ }^{\mathrm{n}}$ is an abelian group with identity
$\overline{0}=0,0,0, \ldots .0, \bar{u}-\bar{v} \in \mathrm{f}_{\mathrm{q}}{ }^{\mathrm{n}}$ and $w t(\bar{u}-\bar{v})$ is also well defined.

II. PRELIMINARY RESULTS

Where not given, Proofs or references for the results of this section may be found in section 2 of [7]
The Hamming weight of a vector \bar{u} denoted by $w t(\bar{u})$ is the number of non- zero entries in \bar{u}. For a linear code, the minimum distance is equal to the smallest of the weights of the non- zero code words. If C is an ($n-k$) code, we let A_{i} and B_{i} denoted the number of code words of weight i in C.
2.1 Definition The minimum distance of the code is the minimum Hamming distance between its code words. That is, $d=\min d(\bar{u}, \bar{v})$

$$
\begin{aligned}
& =\operatorname{mn} w t(\bar{u}-\bar{v}), \bar{u}, \bar{v} \in C, \bar{u} \neq \bar{v} \\
(o r) & =\min w t(\bar{u}), \bar{u} \in C, \bar{u} \neq 0 .
\end{aligned}
$$

It is known that the minimum distance of a linear code is the minimum weight of any non-zero code word.
2.2 Definition A linear code of length n , dimension k , and minimum distance d is known as an
[$\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code.
Bounds on the number of code words in a linear code C of length n, and minimum distance d having studied by various authors. See carry Huffman and Vera pless [1].

Theorem 2.3 (The Mac William's Identities)

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Let C be an $[\mathrm{n}, \mathrm{k}]$ code over GF (q). Then the $\mathrm{A}_{\mathrm{i}}{ }^{\text {s }} \mathrm{s}$ and B_{i} 's satisfy

$$
\sum_{j=0}^{n-t}\binom{n-j}{t} \mathrm{~A}_{\mathrm{j}}-\mathrm{q}^{\mathrm{k}-\mathrm{t}} \sum_{j=0}^{t}\binom{n-j}{n-t} \mathrm{~B}_{\mathrm{j}} \text { for } \mathrm{t}=0,1 \ldots \mathrm{n}
$$

Lemma 2.4 For an ($\mathrm{n}, \mathrm{k}, \mathrm{d}$) code over $\mathrm{GF}(\mathrm{q}), \mathrm{Bi}=0$ for each value of i (where $1 \leq i \leq k)$ such that there does not exist an ($n-i, k-i+1, d$) code.

Lemma 2.5 Suppose \bar{u} and \bar{v} are linearly independent vector in $\mathrm{V}(\mathrm{n}, \mathrm{q})$ then

$$
w t(\bar{u})+w t(\bar{v})+\sum_{i \in G F(q) \cup(0)} w t(\bar{u}+\lambda \bar{v})=q(n-z)
$$

Where Z denotes the number of co-ordinates places in which both \bar{u} and \bar{v} have zero entries.

III. AN INEQUALITY FOR $B_{q}(n, d)$

It is known that $B_{q}(\mathrm{n}, \mathrm{d})$ is a non-negative integer power of q . For an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code $\quad B_{q}(\mathrm{n}, \mathrm{d})=\mathrm{q}^{\mathrm{k}}$

If $\mathrm{d}>1$ then $B_{q}(\mathrm{n}, \mathrm{d}) \leq B_{q}(\mathrm{n}-1, \mathrm{~d}-1)$, for $\mathrm{q}=2 \quad B_{2}(\mathrm{n}, \mathrm{d})=B_{2}(\mathrm{n}-1, \mathrm{~d}-1)$. Also $B_{q}(\mathrm{n}, \mathrm{n})=\mathrm{q}$.
Theorem 3.1 For $d \geq 1$, if $n \geq 2 d-1$, then $B_{q}(\mathrm{n}, \mathrm{d}) \leq q^{d-1}(q-1)^{n-d+1}$

Proof In [1] it is shown that

$$
B_{q}(\mathrm{n}, \mathrm{~d}) \leq q B_{q}(\mathrm{n}-1, \mathrm{~d})
$$

Changing d to $d-1$ in (1.2) we obtain

$$
\begin{equation*}
B_{q}(n, d-1) \leq B_{q}(n-1, d-1) \tag{1.3}
\end{equation*}
$$

As a code word of length n and minimum distance atleast d is counted in a code word of minimum distance atleast $d-1$

$$
\begin{equation*}
B_{q}(\mathrm{n}, \mathrm{~d}) \leq B_{q}(\mathrm{n}, \mathrm{~d}-1) \tag{1.4}
\end{equation*}
$$

\qquad

Form (1.3) and (1.4) we deduce that

$$
\begin{equation*}
B_{q}(\mathrm{n}, \mathrm{~d}) \leq \mathrm{c} B_{q}(\mathrm{n}-1, \mathrm{~d}-1) \tag{1.5}
\end{equation*}
$$

Suppose $n-d=m, m \geq 0$; Successive application of (1.5) $d-1$ times.

$$
\begin{equation*}
B_{q}(\mathrm{n}, \mathrm{~d}) \leq \mathrm{q}^{\mathrm{d}-1} B_{q}(\mathrm{~m}+1, \mathrm{~d}) \tag{1.6}
\end{equation*}
$$

As $m+1=n-(d-1)$. We arrive at

$$
\begin{equation*}
D_{q}(n, \mathrm{~d}) \leq q^{n-1} D_{q}(\mathrm{n}-(\mathrm{d}-1), \mathrm{d}) \tag{1.7}
\end{equation*}
$$

When $n-d+1 \geq d$ (1.7) holds for $n \geq 2 d-1$
But $\quad B_{q}(m+1, d) \leq(q-1)^{m+1}$
Then form (1.7) $\quad B_{q}(n, d) \leq q^{d-1}(q-1)^{n-d+1}$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

 REFERENCES

 REFERENCES}
[1] Carry Huffman and Vera pless, Fundamentals of Errors Correcting Codes Cambridge University press, First south Asian Edition(2004)
[2] L.L.Donhoff and F.E.Hohn , Chapter 2 page 53-57 Applied Modern Algebra Macmillan pub to NY(1978)
[3] P.Delsarte, Bounds for unrestricted codes by linear programming Philips Research Report 27 (1972), 272-289.
[4] P.P.Greenough, searching for optimal linear codes, M.Sc Thesis, University of Salford, 1991.
[5] R.Hill , Optimal linear codes in proceeding and of second IMA conference on Cryptography and coding (oxford university press) to appear [6] R.Hill and D.E.Newton , Some optimal ternary linear codes ,Ars combinatoria 25A (1988),61-72
[7] R.Hill and D.E.Newton, Optimal ternary linear codes, to appear in Design, codes and Cryptography
[8] T.Verhoef f, An updated table of minimum distance bounds for binary linear codes IEEE Trans. Info.Theory , IT-33(1987) 665-680

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

