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Abstract: In this paper we propose a coding technique known as Reed Solomon Erasure Coding using Backblaze method 
(RSECB) for Hadoop data archival system for Hadoop clusters where RS (m+n; m) codes are employed to archive data replicas 
in the Hadoop distributed file system (RSECB). We have originated two strategies for archiving RSECB Hadoop system (i.e., 
Grouping & Pipeline) to speed up the data archival process. RSECB-Grouping: which is based on Map Reduce data archival 
scheme which stores local key-value in the form of mapped intermediate output Key-Value pairs. With the local store in place, 
RSEC-Grouping does integration into a single key-value pair with the same key using all intermediate key-value pairs, 
succeeded by shuffling the single Key-Value pair to reducers to generate final parity blocks. RSECB-Pipeline uses multiple data 
nodes in a Hadoop cluster for forming data archival pipeline. RSECB-Pipeline conveys the merged single key-value pair to a 
successive node’s local key-value store. In the pipeline, the rearmost node is accountable for outputting parity blocks. We 
implement RSECB in a real-world Hadoop cluster. The experimental results show that RSECB-Grouping and RSECB-Pipeline 
diminishes phases by a factor of 15 and 8, subsequently and also accelerates Threshold’s shuffle. When block size is larger 
than 32MB, RSECB Hadoop distributed file system boosts the efficiency of EC and RAID roughly by 16.2% and 42.5%, 
respectively. 
Keywords: Reed Solomon Erasure Coding, Backblaze, Hadoop, Archival, Reconstruction, Map Reduce, Grouping, Pipeline 

I. INTRODUCTION 
Now a days, existing disk-based archival storage systems are inadequate for Hadoop clusters due to the ignorance of data 
replicas and the map-reduce programming model. To tackle this problem, we develop an erasure-coded data archival system 
called RSECB, which archives rare accessed data in large-scale data centers to minimize storage cost. RSECB exploits 
parallel and pipelined encoding processes to speed up data archival performance in Hadoop distributed file system (HDFS) 
on Hadoop clusters. In particular, RSECB leverages the three-way data replicas and the map-reduce programming models in 
Hadoop cluster to boost the archival performance in HDFS. We show how to accelerate the encoding process in RSECB by 
the virtue of data locality of three replicas of blocks in HDFS. The following three factors motivate us to develop the 
erasure-code-based archival system for Hadoop clusters:  

A. a pressing need to lower storage cost,  
B. high cost-effectiveness of erasure-code storage and,  
C. the popularity of Hadoop computing platforms. 

Reducing Storage Cost. Petabytes of data are nowadays stored in large distributed storage systems [1] like the Google File 
System (GFS) [2], the Hadoop Distributed File System (HDFS) [3], the Windows Azure Storage [4]. In 2012, two million of 
search queries received per minute; by 2017, that number has more than double. Every minute, 2.5 million pieces of content 
shared in Facebook, 50 thousand applications downloaded by Apple users, 200 million messages sent via Emails [5]. Such a 
massive amount of data demands large-scale storage systems maintained in data centers. With an increasing number of storage 
nodes installed, the data storage cost goes up dramatically. A large number of nodes leads to a high possibility of failures caused by 
unreliable components, software glitches, machine reboots, maintenance operations and the like. To guarantee high reliability and 
availability in the presence of various types of failures, data redundancy is commonly used in cluster storage systems. Two widely 
adopted fault-tolerant solutions are replicating additional data blocks (i.e., 3X-replica redundancy) and storing additional 
information as parity blocks (i.e., erasure-coded storage). For example, the 3X-replica redundancy is employed in Google’s GFS 
[2], HDFS [3], Amazon S3 [6] to achieve fault tolerance. Also, erasure-coded storage is widely used in cloud storage platforms 
(e.g., Windows Azure and Facebook HDFS [4] [7] [8]) and data centers [9] [10] [11]. One way to reduce storage cost is to convert 
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a 3Xreplica-based storage system into an erasure-coded storage. It makes sense to maintain 3X replicas for frequently accessed 
data. Importantly, managing non-popular data using erasure-coded schemes facilitates savings in storage capacity without 
adversely imposing performance penalty. A significant portion of data in data centers are considered as non-popular data because 
data have an inevitable trend of decreasing access frequencies. Evidence shows that most of data are accessed within a short 
duration of the data’s lifetime. For example, over 90% of accesses in a Yahoo! M45 Hadoop cluster occur within the first day after 
data creation [12].  
Applying Erasure-Coded Storage. Although 3X-replica redundancy (a.k.a., three-way replication) achieves high performance 
than erasure-coded schemes, 3X-replica redundancy inevitably leads to low storage utilization. Cost effective erasure-coded 
storage systems are deployed in large data centers to achieve high reliability at low storage cost [8] [9]. Reed-Solomon code [13] 
is a popular family of erasure codes used in Google’s ColossusFS [14], Facebook’s HDFS [9] [15], and several other storage 
systems [16] [17]. The Reed-Solomon code (RS) has a general 1.5x storage overhead in ColossusFS [14]; the Facebook’s HDFS 
reduces the storage overhead down to 1.4x by adopting RS(m+n,m) (e.g., (10+4,10)), the overhead of which is half less than that 
of 3X-replica redundancy schemes. We are motivated to develop an economically friendly RSECB to archive data replicas in 
Hadoop clusters using erasure codes. Archiving Data in Hadoop. Hadoop is a MapReduce implementation for clusters, where 
HDFS stores data to offer high aggregate I/O bandwidth. Hadoop is a simple yet efficient parallel and distributed computing 
framework providing high scalability and fault tolerance [18] [19]. The popularity of Hadoop inspires us to develop data archival 
schemes for HDFS to maintain a low data storage cost for Hadoop clusters deployed in large-scale data centers. Facebook‘s 
HDFS-RAID implements RS encoding and decoding in the format of a distributed RAID file system running above HDFS [15]. 
HDFS-EC - developed by Cloudera engineers - employs erasure coding to reduce storage overhead compared to replication 
while maintaining high fault tolerance [20]. Our RSECB is similar to HDFS-RAID and HDFS-EC in the way that erasure coding 
is a promising and practical approach to saving storage cost. RSECB differs from HDFS-RAID and HDFS-EC in that RSECB is 
a data archival system that archives rarely accessed replicas in HDFS; archiving replicated data is out the scope of the existing 
HDFS-RAID and HDFS-EC systems. Determining rarely accessed replicas can be achieved by a few straightforward ways like 
Opass [21]. For example, the average number of accesses can be used to distinguish rarely accessed files from popular ones (see, 
for example, [22]). Only the files that have been accessed fewer than a specified threshold will be treated as nonpopular data to 
be archived. In this study, we rely on a dedicated popularity-tracking module to identify rarely accessed replicas. Because such a 
module is orthogonal to RSECB, we pay little attention to the impacts of the popularity tracking module on the performance of 
RSECB. Salient Features of RSECB. We make use of 3X-replica redundancy in HDFS to boost archival performance in clusters 
by the virtue of the MapReduce programming model in addition to reducing network traffic. We develop RSECB - a parallel 
data archival system - for Hadoop clusters. RSECB has the following five salient features. 
1) RSECB manages multiple Map tasks across the data nodes that are archiving their local data in parallel. 
2) Two archival schemes (i.e., parallel archiving and pipeline archiving) are seamlessly integrated into RSECB, which 

switches between the two techniques based on the size and locality of archived files.  
3) Intermediate parity blocks generated in the Map phrase substantially lower the I/O and computing load during the data 

reconstruction process.  
4) RSECB reduces network traffic among nodes during the course of data archiving, because RSECB takes the advantage of 

the good data locality of the 3X-replica technique.  
5) We develop RSECB on the top of Hadoop system, allowing a system administrator to easily and quickly deploy our RSECB 

without having to modify and rebuild HDFS in Hadoop clusters.  
The contributions of this study are: 
6) We propose two efficient archival techniques - parallel archiving and pipeline archiving. These two schemes make use of the 

3X-replica data layout to speed up archival performance.  
7) We apply the MapReduce programming model to develop the RSECB system, where the two data archival techniques are 

implemented for Hadoop clusters.  
8) We conduct extensive experiment to investigate the impacts of the block size, file size, the value size on the performance of 

RSECB. 
II. EXISTING SYSTEM 

When data becomes corrupted in storage systems, erasure coded data can be reconstructed by using data stored in a disk array or 
distributed storage systems. Erasure coding has two salient features, namely, improving fault tolerance performance and 
minimizing the storage-capacity overhead in date centers. For instance, Huang et al. adopted an erasure-coded or RS codes to 
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build an erasure-coded storage cluster [23] to improve both data storage reliability and efficiency. RS(m+n,m) encodes source 
data with RS-generated-coding matrix. It is worth mentioning that the RS generated-coding matrix contains two matrices:  
 • Identical Matrix. This is a m × m matrix, where all the diagonal elements are set to 1 and the other elements are set to 0. 
 • Redundancy Matrix. This is a m × n matrix generating parity blocks. 
With a simple linear algebra calculation, the parity data blocks are derived from the m × n redundancy matrix. In a data archival 
scenario, we simply apply the redundancy matrix to obtain calculate r parity blocks, which can be employed to reconstruct 
blocks for data failures. A RS(m+n,n) code scheme can sustain up to n numbers of concurrent blocks failures. 
Existing work provides high resilience and speedup the data archival performance on cold data but performance degrades for hot 
data. So, in existence, this system is limited cold data. 

III. PROPOSED SYSTEM 
In our proposed system, we address the problem of providing of high resilience to hot data with low storage overhead in a 
distributed system and also, we will investigate a way of choosing intermediate parity blocks to be kept in the local key value 
store to optimize the reconstruction performance. Recent research showed that it is feasible to use erasure coding for hot data as 
well. Our proposed work is two stage process – Data Archival and Data Reconstruction. 
Cold data is the data which less frequently accessed by the particular user whereas hot data is the most frequently used data by 
the user. Even though the existing system makes use of Reed Solomon Erasure Coding using XORing which makes the system 
expensive and adds onto storage overhead and works only on cold data, our proposed system makes use of Reed Solomon 
Erasure Coding using Backblaze method of matrix inversion. 

IV. ARCHITECTURE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1: Architecture 

In, this architecture, when the user uses our application he has to first upload a file which is part of data fetching and upon 
confirmation of uploading the user applies the RS Encoding which splits the file into 6 erasure coded blocks: two parity blocks and 
four data blocks. These erasure coded blocks are then distributed among different nodes known as servers when the user clicks on 
distribute. This describes the archival part of the system. Now the reconstruction part makes uses of pipelining, where the user first 
requests for the desired file, upon sending the request to the system, the cloud searches the related data blocks among all the nodes or 
servers and once retrieved, the user clicks on RS Decode to get the required original file back. In case if an error occurs, i.e., one or 
many of the servers go down or gets corrupted, the RS erasure coding retrieves the lost files back making use of the backblaze 
method using matrix inversion technique by creating data replicas in the initial archival stage.  
The stages that are considered to have much significance in this are as follows: 
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A. Archival Stage 
1) Data fetching: The user selects a file to store in cloud server which are taken as input to our program. 
2) Reed Solomon Encoder: The Input File is first split into multiple data blocks. Each Data blocks are encoded with RS 

Encoding. Reed Solomon Code generates the parity block and takes data blocks as the input and produces coded blocks 
among them two are used as parity blocks and remaining are data blocks. 

3) Distribution Phase: The Erasure coded data blocks are distributed across the multiple nodes to provide high reliability. 
Nodes receive the data blocks and saves them in Hadoop File System(HDFS). 

B. Reconstruction Stage 
1) User Request: The user issues a request for retrieving the file. 
2) Cloud Server: Upon receiving the request, the cloud searches across the nodes for respective data blocks that make up the 

file User request. 
3) RS Decoder: Once it finds all the corresponding blocks the reconstruction process started by applying RS decoding to file 

block and reconstructed file it sends to the user. 
4) Error Phase: The Erasure coded data blocks are distributed across the multiple nodes to provide high reliability. Nodes 

receive the data blocks and saves them in Hadoop File System(HDFS). 

V. ALGORITHM 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Incorporating a pipeline into our parallel data archiving scheme for the RS(6+2,6)-coded storage. 

To boost the performance of the parallel data archiving scheme, we design a pipeline and incorporate the pipelining technique 
into our RSECB system. Fig. 2 shows a way of incorporating a pipeline into our parallel data archiving scheme for the RS 
(6+2,6)-coded storage. In the parallel archiving scheme, intermediate parity blocks created by mappers running on a node are 
delivers to reducers. Unlike this process, the pipelined data archiving scheme delivers intermediate parity blocks (see blocks P1 
and P2 in Fig. 2) to subsequent nodes (for example, node 3 and node n−1 in Fig. 2). Next, the subsequent nodes repeatedly 
deliver their intermediate parity blocks to their subsequent nodes (see, for example, node n is the subsequent one of node n−1). 
Finally, the last node that has no subsequent node writes its parity blocks to the file system (i.e., HDFS). 
Algorithm for RSECB Pipeline Archiving : 
Input: Map-Register, Map-Counter-Key, Val-Buffer 
Map-Register: spawned Mapper tasks on each node 
Map-Counter-Key: amount of mapper tasks which have already stored the key’s value into data server 
Val-Buffer: store the value of Key-Value pairs 
1) If Val-Buffer.get (KEYk) = = null then 
2) Val-Buffer.put (KEYk,, VALUE) 
3) Map-Counter-KEYk++ 
4) Else 
5) Return Val-Buffer.get(KEYk) to Mapper 
6) Mapper executes exclusive or calculation to returned value and value of KEYk   emitted 
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7) Map-Counter-KEYk++ 
8) If Nodes is first node && Map-Counter-KEYk  = = Map-Register then 
9) Write calculated result to subsequential node 
10) Else if node is not last node && Map-Counter-KEYk = = Map-Register+1 then 
11) Write calculated result to subsequential node 
12) Else if node is not last node && Map-Counter-KEYk = = Map-Register+1 then 
13) Write calculated result to reducer 
14) Val-Buffer remove KEYk 
15) Else 
16) Store calculated result to data server 
17) Map-Counter-KEYk++ 
18) End 
19) End 
According to data placement governed by the layout of HDFS, all nodes can be divided into multiple groups, each of which 
handles data archiving operations in a pipelined manner. For example, Fig. 2 shows that node group 1 consists of nodes 2 and 3, 
whereas node group 2 contains nodes 4, n−1, and n. In this example, RSECB builds an archiving pipeline between nodes 2 and 3 
in node group 1; RSECB constructs another archiving pipeline among nodes 4, n−1, and n in node group 2. These two archiving 
pipelines perform data archival operations in parallel. Multiple data archiving pipelines are capable of simultaneously carrying 
out encoding processes for separate data sets, thereby delivering high data-archival performance through improved archival 
parallelism. 

VI. RESULT ANALYSIS 
Now we provide an overall performance evaluation of RSECB by comparing it with the two existing systems, namely HDFS-
RAID [15] and HDFS-EC [20]. Fig. 3(a) shows the data archiving times of our RSECB-Grouping and RSECB-Pipeline with the 
two alternatives under various block size. The experimental results show that when block size is larger than 32MB, RSECB 
improves the performance of HDFS-RAID and HDFS-EC by approximately 31.8% and 15.7%, respectively. If the block size is 
as small as 16 MB, RSECB shorten the execution time of HDFS-RAID and HDFS-EC by 7.3% and 9.6%. No noticeable 
improvement is observed if the block size is below 8 MB. Two factors contribute to the performance improvements. First, 
RSECB significantly shortens the shuffle and reduce phases in the large-block-size cases, because RSECB combines all 
intermediate output Key-Values into a single Key-Value on each node. Second, RSECB optimizes performance through the 
grouping (i.e., local key-value stores) and pipelining techniques. Fig. 3(b) reveals the archiving performance of RSECB, HDFS-
RAID, and HDFS-EC as a function of file size. The performance trend observed in Fig. 3(b) is similar to that shown in Fig. 3(a). 
Fig. 3(c) reveals that the grouping technique of RSECB coupled with a pipeline significantly reduces network traffic for data 
archival workload. For example, RSECB lowers the network traffic of HDFS-RAID and HDFS-EC by 90.5% and 50.9%, 
respectively.  

             
 
 
 
 
 
 

(a)   Impacts of block size                 (b)    Impacts of file size              (c)    Network Traffic 

 
 
 
 
 

Fig. 3: An overall performance comparisons of RSECB, HDFS-RAID, and HDFS-EC. 
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VII. CONCLUSION 
We present an erasure-coded data archival system - RSECB - in the realm of Hadoop cluster computing. We proposed two 
archiving strategies called RSECB-Grouping and RSECB-Pipeline to speed up archival performance in Hadoop distributed 
file system or HDFS. Both the archiving schemes adopt the MapReduce-based grouping strategy, which wraps up multiple 
intermediate key−value pairs sharing same key into one key−value pair on each node. RSECB-Grouping transfers the 
single key−value pair to a reducer, whereas RSECB-Pipeline delivers this key−value pair to the subsequent node in the 
archiving pipeline. We implemented these two archiving strategies, which were compared against the conventional 
MapReduce-based archiving strategy referred to as Baseline. The experimental results show that RSECB-Grouping and 
RSECB-Pipeline can improve the overall archival performance of Baseline by a factor of 4. In particular, RSECB-
Grouping and RSECB Pipeline speed up Baseline’s shuffle and reduce phases by a factor of 10 and 5, respectively. In 
addition, RSECB-Grouping and RSECB-Pipeline significantly lower the network I/O traffic by 87% and 89%, 
respectively. 

VIII. FUTURE ENHANCEMENTS 
As a future research direction, we will develop a data reconstruction system to deal with block failure issues on Hadoop clusters. 
We plan to apply the grouping and pipelining strategies to the reconstruction system to speed up the reconstruction process. To 
optimize reconstruction performance, we will investigate a way of choosing intermediate parity blocks to be kept in the local 
key-value store so that we can make use of dynamic Reed Solomon Erasure coding (m+n;n) using backblaze method of matrix 
conversion. 
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