

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: TPAM-2bssue: onferendelonth of publication: March 2018

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ε-Best Approximation and E- Orthogonality

R.S. Karunya

Assistant Professor, Department of Mathematics, St. Joseph's College of Arts and Science for Women, Hosur.

Abstract: The purpose of this paper is to study the concept of ε -Best approximation and ε -orthogonality. I discussed their properties and noted that are similar to the properties of best approximation.

Keywords: ε-Best approximation, normed linear spaces, proximinal, ε-orthogonality, convex.

I. INTRODUCTION

The theory of best approximation is an important topic in functional analysis. It is a very extensive field which has various applications

What do we mean by "Best approximation" in normed linear spaces?

To explain this, let X be a normed linear space, and let G be a nonempty subset of X. An element $g_0 \in G$ is called a best approximation to x from G if g_0 is closest to x from among all the elements of G.

That is, $\|\mathbf{x} - \mathbf{g}_0\| \le \|\mathbf{x} - \mathbf{g}\|$ for all $\mathbf{g} \in \mathbf{G}$.

The set of all such elements $g_0 \in G$ are called a **best approximation** to $x \in X$ is denoted by $P_G(x)$.

If $P_G(x)$ contains at least one element, then the subset G is called a *proximinal* set. If

each element $x \in X$ has a unique best approximation in G, then G is called a *Chebyshev* set of X.

The theory of approximation is mainly concerned with the following fundamental questions.

- 1) (Existence of best approximation) Which subsets are proximinal?
- 2) (Uniqueness of best approximation) Which subsets are Chebyshev?
- 3) (Characterization of best approximation) How to recognize when a given $y \in G$ is a best approximation to x or not?
- 4) (*Error of approximation*) How to compute the error of approximation d(x, G)?
- 5) (Computation of best approximation) How to describe some useful algorithms for actually computing best approximation?
- 6) (Continuity of best approximation) How does the set of all best approximation vary as a function of x or (G)?

A. Definition 1.1[1]

Let G be a nonempty subset of a real normed linear space E and let an element $f \in E$ be given. The problem of **best approximation** is to determine an element $g_f \in G$ such that

$$\label{eq:f-gf} \| \ f\text{-} \ g_f \ \| = \ \inf_{g \in G} \lVert f - g \rVert$$

such an element is called a best approximation to f from G, and

$$d(f,\,G\,)=\inf_{g\in G}\lVert f-g\rVert \text{ is called the } \textit{minimal deviation } off \text{ from } G.$$

The set of all elements $g_0 \in G$ that are called best approximation to $x \in X$ is

$$P_G(x) = \{ g_0 \in G : \| x - g_0 \| \le \| x - g \| \text{ for all } g \in G \}$$

Hence P_G defines a mapping from X into the power set of G is called the *metric projection* onto G, (other names nearest point mapping, proximity map)

B. Remark 1.2[1]

The set $P_G(x)$ of all *best approximation* to $x \in X$ can be written as

$$P_G(x) = \{g_0 \in G: ||x-g_0|| = d(x, G)\}$$

C. Definition 1.3.[3]

A set S, in a linear space is *convex* .if $s_1, s_2 \in S$ implies that

$$\lambda_1 s_1 + \lambda_2 s_2 \in S$$

If λ_1 and λ_2 are non negative and $\lambda_1 + \lambda_2 = 1$

If S is empty or consists of one point, then it is clearly *convex*

D. Definition 1.4[1]

If $P_G(x)$ contains at least one element, then the subset G is called a *proximinal set*.

In other words, if $P_G(x) \neq \varphi$ then G is called a *proximinal set*

The term proximinal set (is a combination of proximity and maximal)

E. Definition 1.5[1] (Quasi-Orthogonal Set)

Let X be a normed linear space, and G a nonempty subset of X. Then we say that G is *quasi-orthogonal set* if $G \perp_B \hat{G}$, that is $g \perp_B \hat{G}$ for every $g \in G$.

where
$$\hat{G} = \{x \in X : ||x|| = d(x, G)\} = \{x \in X : x \perp_B G\}.$$

F. Remark 1.6[1]

In a Hilbert space, any closed subspace is quasi-orthogonal.

Proof:

Let H be a Hilbert space and G a closed subspace of H.

Then $\hat{G} = G^{\perp} = \{ y \in H : \langle x, y \rangle = 0, \text{ for all } x \in G \}$. Then $G \perp \hat{G}$.

Therefore G is quasi-orthogonal subspace of H.

G. Definition 1.7[2]

Let X be a normed linear space and G be a subset of X, and $\varepsilon > 0$. A point $g_0 \in G$ is said to be ε -best approximation for $x \in X$ if and only if

$$\|\mathbf{x} - \mathbf{g}_0\| \le \|\mathbf{x} - \mathbf{g}\| + \varepsilon$$
 for all $\mathbf{g} \in G$

H. Remark 1.8[2]

For $x \in X$, the set of all ε -Best approximation of x in G is denoted by

 $P_G(x, \varepsilon)$, in other words,

$$P_G(x,\,\epsilon) = \{g_0 \in G \colon \| \ x - g_0 \ \| \le \| \ x - \ g \ \| + \epsilon \text{ for all } g \in G \}.$$

I. Theorem 1.9[2]

Let G be a subspace of a normed linear space X. Then $P_G(x, \varepsilon)$ is bounded.

Proof:

Let $g_1, g_2 \in P_G(x, \varepsilon)$, then $||x - g_1|| \le ||x - g|| + \varepsilon$ for all $g \in G$, and

$$\|x - g_2\| \le \|x - g\| + \varepsilon$$
 for all $g \in G$

Now,
$$\parallel g_1-g_2\parallel=\parallel g_1-x+x-g_2\parallel\leq \parallel x-g_1\parallel+\parallel x-g_2\parallel$$

$$\leq \|\mathbf{x} - \mathbf{g}\| + \varepsilon + \|\mathbf{x} - \mathbf{g}\| + \varepsilon = 2 \|\mathbf{x} - \mathbf{g}\| + 2\varepsilon = k$$

so we have $\|g_1 - g_2\| \le k$ where $k = 2d(x, G) + 2\epsilon$.

Therefore, $P_G(x, \varepsilon)$ is bounded.

Hence the proof

J. Theorem 1.10[2]

Let G be a subspace of normed linear space X, and $x \in X$. Then $P_G(x, \varepsilon)$ is convex.

Proof:

Let $g_1, g_2 \in P_G(x, \epsilon)$, and $0 \le \lambda \le 1$, then $\|x - g_1\| \le \|x - g\| + \epsilon$ for all $g \in G$, and $\|x - g_2\| \le \|x - g\| + \epsilon$ for all $g \in G$ Now, $\|x - (\lambda g_1 + (1 - \lambda) g_2)\| = \|x - \lambda g_1 - g_2 + \lambda g_2\|$ $= \|x - \lambda g_1 - g_2 + \lambda g_2 + \lambda x - \lambda x\|$ $= \|\lambda(x - g_1) + (1 - \lambda)(x - g_2)\|$ $\le \|x - g_1\| + (1 - \lambda)\|x - g_2\|$ $\le \lambda(\|x - g\| + \epsilon) + (1 - \lambda)(\|x - g\| + \epsilon)$ $= \|x - g\| + \epsilon.$

Thus, $\lambda g_1 + (1 - \lambda)g_2 \in P_G(x, \varepsilon)$.

Hence $P_G(x, \varepsilon)$ is convex.

Hence the proof

K. Definition 1.11.[2] (ε -orthogonality)

Let X be a normed linear space, $\epsilon > 0$, and $x, y \in X$. We call x is ϵ - *orthogonal* to y and is denoted by $x \perp_{\epsilon} y$ if and only if $\|x + \alpha y\| + \epsilon \ge \|x\|$ for all scaler α with $|\alpha| \le 1$

For subsets G_1 , G_2 of X, $G_1 \perp_{\epsilon} G_2$ if and only if, $g_1 \perp_{\epsilon} g_2$ for all $g_1 \in G_1$, $g_2 \in G_2$.

L. Theorem: 1.12[2]

Let X be a normed linear space, G be a subspace of X, and $\varepsilon > 0$. Then for all $x \in X$,

 $g_0 \in P_G(x,\,\epsilon) \text{ if and only if } (x-g_0) \perp_\epsilon G.$

Proof:

(=>) Suppose $g_0 \in P_G(x, \varepsilon)$. Put $g_1 = g_0 - \alpha g$ for $g \in G$ and $|\alpha| \le 1$.

Since $g_0 \in P_G(x, \varepsilon)$ and $g_1 \in G$ so, then, $||x - g_0|| \le ||x - g_1|| + \varepsilon$, then

$$\|\mathbf{x} - \mathbf{g}_0\| \le \|\mathbf{x} - (\mathbf{g}_0 - \alpha \mathbf{g})\| + \varepsilon$$
, and this implies that

$$\|\mathbf{x} - \mathbf{g}_0\| \le \|(\mathbf{x} - \mathbf{g}_0) + \alpha \mathbf{g}\| + \epsilon.$$

Therefore, $(x - g_0) \perp_{\epsilon} G$.

(\leq) Let $(x - g_0) \perp_{\varepsilon} G$, then for all α with $|\alpha| \leq 1$ and $g_1 \in G$

we have,

$$\parallel x - g_0 \parallel \, \leq \, \parallel x - g_0 + \alpha g_1 \parallel + \epsilon$$

For any $g \in G$ by putting $g_1 = g_0 - g$ and $\alpha = 1$, the last inequality implies,

$$\| \mathbf{x} - \mathbf{g}_0 \| \le \| \mathbf{x} - \mathbf{g} \| + \varepsilon$$

Therefore, $g_0 \in P_G(x, \varepsilon)$

Hence the proof

M. Notation 1.13

Let X be a normed linear space, and G a subspace of X, and for $\varepsilon > 0$, let

$$P_{G^{-1}}(0, \varepsilon) = \{x \in X : \|x\| \le \|x - g\| + \varepsilon \text{ for all } g \in G\} = \{x \in X : x \perp_{\varepsilon} G\}$$

Then, $\hat{G}_{\varepsilon} = \{x \in X: x \perp_{\varepsilon} G\}.$

N. Lemma 1.14[2]

Let G be a subspace of a normed linear space X. Then for all $x \in X$ and all $\varepsilon > 0$,

we have, $g_0 \in P_G(x,\,\epsilon)$ if and only if $(x-g_0) \in \hat{G}_\epsilon$

Proof

 $g_0 \in P_G(x, \varepsilon)$ if and only if by [Theorem1.12], $(x - g_0) \perp_{\varepsilon} \hat{G}_{\varepsilon}$ if and only if $(x - g_0) \in \hat{G}_{\varepsilon}$.

O. Corollary 1.15

Let G be a subspace of a normed linear space X, and let $\varepsilon > 0$, $x \in X$. Then,

$$P_G(x, \varepsilon) = G \cap (x - \hat{G}_{\varepsilon})$$

Proof:

```
g_0 \in G \cap (x - \hat{G}_{\epsilon}) if and only if g_0 \in G, and g_0 \in (x - \hat{G}_{\epsilon}) if and only if
g_0 \in G and g_0 = x - \hat{g}, where \hat{g} \in \hat{G}_{\epsilon} if and only if g_0 \in G, \hat{g} = (x - g_0) \in \hat{G}_{\epsilon}
if and only if g_0 \in P_G(x, \varepsilon) by [ Lemma 1.14].
Therefore, P_G(x, \varepsilon) = G \cap (x - \hat{G}_{\varepsilon})
 Hence the proof
P. Theorem 1.16
Let G be a subspace of a normed linear space X, \varepsilon > 0, and \varepsilon \ge \alpha. Then,
 \hat{G} \subseteq \hat{G}_{\alpha} \subseteq \hat{G}_{\epsilon}, and therefore \bigcap_{\epsilon>0} \hat{G}_{\epsilon} = \hat{G}
Proof:
          Let x \in \hat{G}, then ||x|| \le ||x - g|| for all g \in G.
          Now \|x\| \le \|x - g\| \le \|x - g\| + \alpha [\alpha > 0], so, we have x \in \hat{G}_{\alpha}.
         Hence \hat{G} \subseteq \hat{G}_{\alpha} \dots (1)
         Let x \in \hat{G}_{\alpha}, then ||x|| \le ||x-g|| + \alpha \le ||x-g|| + \epsilon [\epsilon > \alpha], this implies that
         x \in \hat{G}_{\varepsilon}, and so, \hat{G}_{\alpha} \subseteq \hat{G}_{\varepsilon} = \dots (2)
         (1) and (2) together imply that \hat{G} \subseteq \hat{G}_{\alpha} \subseteq \hat{G}_{\epsilon},
          Now, we show \bigcap_{\varepsilon>0} \hat{G}_{\varepsilon} = \hat{G}
          From above we have \hat{G} \subset \bigcap_{\epsilon > 0} \hat{G}_{\epsilon}
          conversely, let x \in \bigcap_{\varepsilon > 0} \hat{G}_{\varepsilon},
          Then for all \epsilon > 0, 0 \le \|x\| \le \|x - g\| + \epsilon for all g \in G, then for all n \in N,
           0 \leq \parallel x \parallel \leq \parallel x - g \parallel + \frac{1}{n} \text{ for all } g \in G\text{:}
            As n \to \infty, \|x\| \le \|x - g\| for all g \in G, then x \in \hat{G},
            and so,
                \bigcap_{\varepsilon>0} \hat{G}_{\varepsilon} \underline{C} \hat{G}
             Therefore \bigcap_{\varepsilon>0} \hat{G}_{\varepsilon} = \hat{G}
             Hence the proof.
Q. Lemma 1.17
Let G be a subspace of a normed linear space X. Then.
1) If \varepsilon > 0, x, g \in X and x \perp_{\varepsilon} g, then x \perp_{\delta} g for all \delta \ge \varepsilon.
2) If x, g \in X and x \perp_B g, then x \perp_{\varepsilon} g for all \varepsilon > 0.
3) If x \in X, and \varepsilon > 0, then 0 \perp_{\varepsilon} x, x \perp_{\varepsilon} 0.
4) If x \perp_{\varepsilon} g and |\beta| < 1, then \beta x \perp_{\varepsilon} \beta g.
Proof:
        (a) Let \varepsilon > 0, x, g \in X and x \perp_{\varepsilon} g, then by [Definition 1.11] we have
          \| x \| \le \| x + \alpha g \| + \varepsilon, where | \alpha | \le 1 and \varepsilon > 0
        Then, \| x \| \le \| x + \alpha g \| + \varepsilon \le \| x + \alpha g \| + \delta, [since \delta \ge \varepsilon]
        Therefore, x \perp_{\delta} g
       (b) Let x, g \in X and x \perp_B g, then ||x|| \leq ||x + \alpha g|| for all \alpha \in \mathbb{R}
       Since \varepsilon > 0, then \| x \| \le \| x + \alpha g \| \le \| x + \alpha g \| + \varepsilon for all | \alpha | \le 1
       Hence x \perp_{\varepsilon} g for all \varepsilon > 0
       (c) Let x \in X and \varepsilon > 0, then ||0|| \le ||0 + \alpha x|| + \varepsilon, and so 0 \perp_{\varepsilon} x.
        We have also \|x\| \le \|x\| + \epsilon, then \|x\| \le \|x + \alpha 0\| + \epsilon,
         Hence x \perp_{\epsilon} 0.
     (d) Let x \perp_{\varepsilon} g, and |\beta| < 1, then ||x|| \le ||x + \alpha g|| + \varepsilon.
          Multiply both sides by |\beta|,
           we get |\beta| \|x\| \le \|\beta x + \beta \alpha g\| + |\beta| \epsilon
       \leq \|\beta x + \alpha_1 g\| + \varepsilon, and so
      \parallel \beta x \parallel \leq \parallel \beta x + \alpha_1 g \parallel + \epsilon
      Therefore, \beta x \perp_{\varepsilon} \beta g
                       Hence the proof
```

```
\begin{split} & R. \quad \textit{Theorem 1.18} \\ & \text{Let G be a subspace of a normed linear space } X. \text{ If } x \in X, \, \epsilon \geq 0 \\ & \text{and } \delta \geq \epsilon, \text{ then } P_G(x, \, \epsilon) \; \underline{\text{C}} \; P_G(x, \, \delta). \\ & \textit{Proof:} \\ & \text{Let } g_0 \in P_G(x, \, \epsilon). \text{ Then by [Definition 1.7], we have} \\ & \| \, x - g_0 \, \| \leq \| \, x - g \, \| + \epsilon \text{ for all } g \in G \text{ and } \epsilon \geq 0 \\ & \text{Then } \| \, x - g_0 \, \| \leq \| \, x - g \, \| + \epsilon \leq \| \, x - g \, \| + \delta \\ & \text{[since } \delta \geq \epsilon], \text{ then, } g_0 \in P_G(x, \, \delta). \\ & \text{Therefore } P_G(x, \, \epsilon) \; \underline{\text{C}} \; P_G(x, \, \delta) \\ & \text{Hence the proof} \end{split}
```

II. CONCLUSION

Here, I conclude my paper as ε -Best approximation and ε - orthogonality has the properties which are similar to the properties of best approximation.

REFERENCE

- [1] Mazaheri .H ,Maalek Ghaini.F.m, 'Quasi -Orthogonality of the best approximation sets', Non linear Analysis ,65534-537(2006)
- [2] White.A,2-Banach Spacs, Math. Nachr, 42(1969), 43-60
- [3] Rivlin.Theodore J 'The Approximation of Function' 1969

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)