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Abstract: An intelligent optimization method for designing PID controllers based on particle swarm optimization (PSO) is 
presented in this paper. The conventional gain tuning of PID controller (such as Ziegler-Nichols (ZN) method) usually produces 
a big overshoot, and therefore modern heuristics approach such as genetic algorithm (GA) and particle swarm optimization 
(PSO) are employed to enhance the capability of traditional techniques.  However, due to the computational efficiency, only PSO 
will be used in this paper. The performance comparison of the ZNPI and PSO based PI controllers are compared based on 
performance indices like maximum peak overshoot, settling time, Integral Square Error (ISE) and integral absolute error (IAE). 
The proposed PSO based PI controller is tested on the chosen hemispherical Tank level system and better controller 
performance can be envisaged by in the proposed methods than that of the ZNPI controller. 
Keywords: Hemispherical Tank, Optimization, Particle Swarm Optimization, PI Controller, 

I. INTRODUCTION 
Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by Dr.  Eberhart and Dr. 
Kennedy  in 1995, inspired by social behaviour of bird flocking or fish schooling’s shares many similarities with evolutionary 
computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and 
searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. 
In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO 
algorithm in finding optimal values follows the work of this animal society. Particle swarm optimization consists of a swarm of 
particles, where particle represent a potential solution. [1-4] In past several years, PSO has been successfully used across a wide 
range of application fields as well as in specific applications focused on a specific requirement for the two reason following. First it 
is demonstrated that PSO gets better results in a faster, cheaper way compared with other methods and second reason that PSO is 
attractive is that there are few parameters to adjust. One version, with slight variations, works well in a wide variety of applications 
[5-7].   The present work deals with the design of controller for hemispherical tank system. The contribution of this work consists 
mainly in the design of KP, Ki, and Kd, values are found using three types of Particle swarm optimization techniques to design the 
PID controller and compared with conventional one. The development and implementation of the proposed system and controllers 
was done using MATLAB/Simulink. 

II. HEMISPHERICAL TANK LEVEL PROCESS 
First a hemispherical tank laboratory level process whose parameters vary with respect to process variable is considered for 
simulation and real time implementation. Even though the selected process is simple, it has high nonlinearity. The state variables of 
the system considered for study can be measured easily and the system is pure single input single output system. A shift in the 
operating point towards top of the tank will increase the time constant and static gain. Similarly a shift in the operating point 
towards the bottom of the tank will decrease in time constant and static gain. Thus, the hemispherical tank level process whose time 
constant and gain are functions of the process variable becomes suitable for the present work. 

A. Mathematical Modelling Of Hemispherical Tank Level Process 
The hemispherical tank level process shown in Fig.1 is considered for study. 
Height of the liquid level in this tank is h meter. Volume of liquid in the hemispherical tank is given by 

 
6

hr3hV
22 

         (1) 

Where r is the radius of the liquid top surface. r   may  be eliminated by using the Pythagorean relation 

 222 hRrR          (2) 

Where R is the total height as well as radius of the tank 
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Fig. 1 Hemispherical tank level process 

Further elementary algebraic manipulation yields 








  32 h
3
1RhV        (3) 

Where V is the volume of the liquid in the tank 
Differentiating the above equation with respect to t we have 
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The mass balance equation governing the system by assuming constant density of the liquid is 

outin FF
dt
dV

          (5) 

Where Fin and Fout are the inflow and out flow rates of the process respectively.  Fout is assumed to be proportional to h  and is 
given by 

hcFout          (6) 
Where c is the constant of proportionality.  A delay time (Td) is introduced in the in flow Fin to incorporate a dead time in the 
process and u is linear function.  The equation becomes  

hc)Tt(u
dt
dV

d         (7) 

Substitute Eq. (4)  in (7), we have 

)hRh2(
hc)Tt(u

dt
dh

2
d




        (8) 

    This is the mathematical model of the hemispherical tank level process 

III. TUNING OF PI CONTROLLER 
The goal of PI controller tuning is to determine parameters that meet closed loop system performance specifications, and to ensure 
the robust performance of the control loop over a wide range of operating conditions. Practically, it is often difficult to 
simultaneously achieve all of these desirable qualities. For example, if the PI controller is adjusted to provide better transient 
response to set point change, it usually results in a sluggish response when under disturbance conditions. On the other hand, if the 
control system is made robust to disturbance by choosing conservative values for the PI controller, it may result in a slow closed 
loop response to a set point change. A number of tuning techniques that take into consideration the nature of the dynamics present 
within a process control loop have been proposed (Ziegler and Nichols, 1942; Cohen and Coon, 1953; Åström and Hägglund, 1984; 
and Atherton, 1993).[13-15] All these methods are based upon the dynamical behavior of the system under either open-loop or 
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closed-loop conditions The Simulink model of the hemispherical tank level process is shown in figure 2. The height and top radius 
of the hemispherical tank are assumed as 30 cm and 15 cm respectively. A dead time (Td) of 30 seconds is introduced in the process 
through software. The time constant and the gain of the process increase as the level increases..  To obtain the transfer function 
model, reaction curves for various magnitudes of input at 50% percentage of nominal operating point are obtained by MATLAB 
Simulink software as shown in the figures 3. Different step changes in input (say)   10%, 20 %, and 30% are given to obtain reaction 
curves.  The corresponding process gain and time constant are tabulated in the Tables 1. 

 
Fig. 2 Simulink model of hemispherical tank level process 
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Fig. 3 Reaction curve for different set values 

Table 1 Model parameters obtained from simulated reaction curves for hemispherical tank 
Step 

change 
Process gain 

 

Time constant 

 

Dead Time   

 
30% 2.09 1424.58 41.72 
20% 2.011 1422 22.35 
10% 1.926 1383.75 8.75 
-10% 1.76 1206.8 28 
-20% 1.674 1098.96 40.18 
-30% 1.589 989.55 52.45 

 

The gain of the system varies from 1.589 to 2.09 and the time constant varies from 989.55 to 1424.58 sec as the level varies from 
25% to 80%. For the simulation study, the reaction curve for +10% change at 50% nominal operating point is considered to tune the 
PI controller. The tuning parameters obtained are Kc=9.123 and Ti=0.136  

IV. PARTICLE SWARM OPTIMIZATION 
PSO is an evolutionary computational technique based on the movement and intelligence of swarms looking for the most fertile 
feeding location. A “swarm” is an apparently disorganized collection (population) of moving individuals that tend to cluster 
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together, while each individual seems to be moving in a random direction. PSO uses a number of agents (particles) that constitute a 
swarm moving around in the search space looking for the best solution [2,8,9]. Each particle is treated as a point in an n-dimensional 
space and adjusts its “flying” according to its own flying experience, as well as the flying experience of other particles. Each particle 
keeps track of its coordinates in the problem space, which are associated with the best solution (fitness) that has been achieved so 
far. This value is called pbest. Another best value called gbest is that obtained so far by any particle in the neighbours of the particle. 
The PSO concept consists of changing the velocity (or acceleration) of each particle toward its pbest and the gbest position at each time 
step. Each particle tries to modify its current position and velocity according to the distance between its current position and pbest, 
and the distance between its current position and the gbest. At each step n, by using the individual best position, pbest, and global best 
position, gbest, a new velocity for the ith particle is updated by, 

)xgbest(rc)xpbest(rcwvv k
i22

k
ii11

k
i

1k
i      (9) 

1tt1t xxx          (10) 

With regards to (9): 

w  =  Inertial Weight 
k
iv  =  current velocity of agent i at iteration k 

1k
iv   =  new velocity of agent i at iteration k+1 

c1, c2 =  adjustable social acceleration constant (swarm confidence), 
r1, r2 =  random number between 0 and 1, 

k
ix  =  current position of agent i at iteration k, 

pbesti  =  personal best of agent i , 
gbest =  global best of the population. 

For (10): 
1k

ix   = position of agent iat the next iteration k+1, 

The parameter ‘W’ in Equation (2) is inertia weight that increases the overall performance of PSO. It is reported that a larger value 
of ‘W’ can favour higher ability for global search while lower value of W implies a higher ability for local re-search. To achieve a 
higher performance, we linearly decrease the value of inertia weight W over the generations to favour global re-search in initial 
generations and local re-search in the later generations. The linearly decreasing value of inertia is expressed in Equation (11). 

max

minmax
max iter

wwiterww 
       (11) 

Where itermax is the maximum of iteration in evolution process, wmax is maximum value of inertia weight, wmin is the minimum value 
of inertia weight, and iter is current value of iteration. 
Once the particle computes the new xt it then evaluates its new location. If fitness (xt) is better than fitness ( pbest) , then pbest =  xt and  
fitness  (pbest)  =  fitness  (xt), in the end of iteration  the  fitness  (gbest)  =  the  better  fitness (pbest), and gbest = pbest. 

The  PSO  algorithm  method  has  been  implemented as M  file by MATLAB  which  is interconnected  to  the Simulink model , 
where the PID  controller  parameters  are  computed  and fed to the GUI of the controller. The optimization performed with this 
initial parameter, number of particles 30, number of dimensions 3, maximum iteration 50, C1=1, C2=3, with the objective function 
ITAE or ISE. The initial values of three  parameters Kp, Ki and Kd, of the PID controller will be generated in PSO program  and 
submitted and running the simulation automatically then compute the objective function ITAE and go back with value of ITAE to 
PSO program to improve the value of Kp, Ki and Kd, , and go on. In the end of iteration  the parameters of the PID controller Kp, Ki, 
Kd has been obtained directly according to the  minimum  value  of  objective  function  ITAE.  Fig. 4, shows the flowchart of PSO 
based PID tuning algorithm 
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Fig. 4 flow chart of PSO based PID tuning 

A. The design steps of PSO based PID controller  
1) Initialize the algorithm parameters like a number of generations, population, inertia weight, cognitive and social coefficients. 
2) Initialize the values of the parameters Kp, Ki and Kd randomly. 
3) Calculate the fitness function of each particle in each generation. 
4) Calculate the local best of each particle and the global best of the particles. 
5) Update the position, velocity, local best and global best in each generation. 
6) Repeat the steps 3 to 5 until the maximum iteration reached or the best solution is found. 

V. PERFORMANCE OF HEMISPHERICAL TANK WITH PSO BASED PI CONTROLLER 
The performance of Particle Swarm Optimization based PI controller for hemispherical tank level process is compared with 
conventional ZN PI.  
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   (a) Servo Response                                              (b) Regulatory Response  

Fig. 5 Hemispherical tank level for 10% increment and decrement in load from nominal operating load of 25% using PSO tuned PI 
controller 
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    (a) Servo Response                                        (b) Regulatory Response 

Fig. 6 Hemispherical tank level for 10% increment and decrement in load from nominal operating load of 50% using PSO tuned PI 
controller 
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(a) Servo Response                                        (b) Regulatory Response 

Fig. 7 Hemispherical tank level for 10% increment and decrement in load from nominal operating load of 75% using PSO tuned PI 
controller 

The performance of Particle Swarm Optimization based PI controller for hemispherical tank level process is compared with 
conventional ZN PI. Fig. 5(a) shows the servo response of 10% increase in set point from nominal operating point and 10% 
decrement in setpoint from the nominal operating point of 25%. Fig. 5(b) shows the regulatory response of both positive and 
negative load change of 10% at a nominal operating load of 25%.  
Fig. 6(a) shows the servo response of 10% increment in set point from nominal operating point and 10% decrement in set point from 
the nominal operating point of 50%. Fig. 6(b) shows the regulatory response of both positive and negative load change of 10% at a 
nominal operating load of 50%.  
Fig. 7(a) shows the servo response of 10% increment in set point from nominal operating point and 10% decrement in set point from 
the nominal operating point of 75%. Fig. 7(b) shows the regulatory response of both positive and negative load change of 10% at a 
nominal operating load of 75%. PSO based PI controllers give responses with no oscillations, smaller ISE and IAE. In the case of all 
PSO PI, it is settling time better than ZN PI controller as given in Tables. 2. 

 
Table 2 (a) Performance index for Hemispherical Tank at various nominal operating points for Servo Response 

Nominal 
operating 

point 
Controller 

Servo Response 
10% increment in SP 10% decrement in SP 

over 
shoot 
(% ) 

Settling 
time 
(s) 

ISE IAE 
under 
shoot 
(% ) 

Settling 
time 
(s) 

ISE IAE 

25% 
ZNPI 58 2479 1352 1076 59 2360 1257 1043 

PSO PI 18.4 920 564 389 18 889 534 328 

50% 
ZNPI 66.2 4415 2068 1656 75.3 2998 1898 1363 

PSO PI 24.2 1380 787 573 24.4 990 737 509 

75% 
ZNPI 70.5 4052 2559 1983 74 3847 2403 1843 

PSO PI 27 1163 923 681 27.1 1080 896 644 
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Table 2 (b) Performance index for Hemispherical Tank at various nominal operating points for Regulatory response 

 
VI. CONCLUSION 

PSO based PI controller are used to control the level in the hemispherical tank. It has been shown that the speed of responses of the 
level control system with and without load interrupt in the tank are fast. In order to appraise the performance of the controller, the 
proposed controller was done with MATLAB/Simulink. The PSO tuned PI controller offers enhanced process characteristics such as 
better time domain specifications, smooth reference tracking, supply disturbance rejection, and error minimization compared with 
ZN PI. In addition, the PSO - PI controller enhanced the flexibility and stability of the hemispherical tank level process. 
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Nominal 
operating point 

Controller 

Regulatory Response 
10% increment in load 10% decrement in load 

under 
shoot 
(% ) 

Settling 
time 
(s) 

ISE IAE 
over 
shoot 
(% ) 

Settling 
time 
(s) 

ISE IAE 

25% 
ZNPI 93.8 2570 1169 626 58.2 2674 1352 1076 

PSO PI 33.4 1076 518 322 18.3 956 562 389 

50% 
ZNPI 74.7 2686 1868 1393 66.3 3385 2068 1655 

PSO PI 24.2 1530 735 508 24.1 994 786 572 

75% 
ZNPI 102.6 3390 2403 1834 77 4053 2499 1988 

PSO PI 27.4 1281 894 643 27.1 1706 920 681 



 


