

6 V May 2018

http://doi.org/10.22214/ijraset.2018.5314

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1934 ©IJRASET: All Rights are Reserved

A Novel Architecture to Efficient utilization of
Hadoop Distributed File Systems for Small Files

Vaishali1 , Prem Sagar Sharma2

1M. Tech Scholar, Dept. of CSE., BSAITM Faridabad, (HR), India
2Assistant Professor, Dept. of CSE, BSAITM Faridabad, (HR), India

Abstract: Hadoop is known as an open source distributed computing platform and HDFS is defined as Hadoop Distributed File
System having powerful data storage capacity therefore suitable for cloud storage system. HDFS was designed for streaming
access on large software and it has low storage efficiency for massive small files. For this problem, the HDFS file storage
process is improved and therefore files are judged before uploading to HDFS clusters. If the file is of small size then it is merged
and its index information is stored in index file in the form of key-value pairs else it will directly go to HDFS Client. Also if all
files are processed and no file left to be merged then the merged files go to the HDFS.[7]
Keywords: hadoop, hdfs, small files storage, file processing, file storing

I. INTRODUCTION
Hadoop is known as an open source distributed computing platforms. Its design is basically proposed for managing the big data. It
changes the way that any organizations store, process and analyze data. The architecture of Hadoop is scalable, reliable and flexible.
It allows data to store and analyze at very high speed. It provides services such as data processing, data access, data governance,
security.[1]
HDFS is defined as Hadoop Distributed File Systems. As the name specifies it is distributed file-system that stores data on
commodity machines which provides very high bandwidth across cluster. It is high fault tolerance and gives native support of large
data sets as well as it stores data on commodity hardware.
[1] Basically it is specially designed file system for storing huge datasets with cluster of commodity hardware with streaming access
patterns. Here streaming access patterns means that write once and read any number of times but content of file should not be
changed. HDFS has powerful data storage capacity such that it is suitable for cloud storage systems.
HDFS was originally developed for large software and therefore it has low storage efficiency for large number of small files.

A. Hdfs Architecture
HDFS architecture (shown in fig-1) is suitable for distributed processing and storage as well as it provides file authentication and
permissions. HDFS is comprised of NameNode, Secondary NameNode, Job Tracker, DataNode, Task Tracker.

MASTER SERVICES SLAVE SERVICES

Fig-1: Architecture of HDFS

NameNode

Secondary NameNode

Job Tracker

Data Node

Task Tracker

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1935 ©IJRASET: All Rights are Reserved

The communication between master services and slave services is done as it is shown in figure. As all master services can
communicate with each other, similarly slave services can communicate with each other. NameNode can communicate with Data
Node and vice-versa as well as Job Tracker can communicate with Task Tracker and vice-versa.
1) NameNode: NameNode seems like a manager. It creates and maintains the Metadata of the data. It tells client that store data in

the available spaces. NameNode maintains three replications of the data including the original copy of data. If any replica is lost
due to any failure, in that case, NameNode will create another replica of it.

2) Secondary NameNode: It is just a helper node for NameNode so that it helps in better functioning of NameNode. Its purpose is
to have a checkpoint of file system Metadata present on NameNode. ‘Checkpoint node’ is another name of it.

3) Job Tracker: Job Tracker basically monitors everything and it knows very well that how many jobs are running. Job Tracker
assigns tasks to Task Tracker.

4) DataNode: DataNode basically gives block reports and heartbeat to NameNode. If DataNode do not send heartbeat then in that
case NameNode will assume that it is dead.

5) Task Tracker: Task Tracker is used to receive tasks from Job Tracker. All Task Tracker give some heartbeat back to the Job
Tracker every three seconds to tell they are still alive. If they does not inform Job Tracker then in that case Job Tracker will
assume that either they are working very slowly or may be dead.

II. LITERATURE SURVEY
Table-1: Summary of Various research papers

S.No Paper Title Author Analysis Findings
1 A Novel Approach

to improve the
performance of
Hadoop in
Handling of Small
Files.[1]

Parth Gohil, Bakul
Panchal, J.S. Dhobi

Drawback of HAR
approach is removed by
eliminating big files in
archiving. Uses Indexing
for sequential file created.

Improves the
performance by
ignoring the files whose
size is larger than the
block size of Hadoop.

2 An improved
HDFS for small
file

Liu changtong
china,

Small file problem of
original HDFS is
eliminated by judging
them before uploading to
HDFS clusters. If the file
is a small file, it is merged
and the index information
of the small file is stored
in the index file with the
form of key- value pairs

Access efficiency of
NameNode is increased.

3 Dealing with small
files problem in
Hadoop Distributed
File System

Sachin Bendea,
Rajashree Shedbeg,

Comparative study of
possible solutions for
small file problem.

CombinedFileInput-
Format provides best
performance.

4 Hadoop
Architecture and
Applications

Kusum Munde,
Musrat Jahan

Hadoop has designed to
manage Big Data so that
it changes the way the
enterprises store, process
and analyze the data.
Hadoop provides services
for large data sets such as
data processing, data
access, data governance,
security.

Hadoop supports
distributed storage and
distributed computing.
Data is stored in HDFS
which uses block
replicas so it is fault
tolerant also.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1936 ©IJRASET: All Rights are Reserved

5 An approach to
solve a Small File
problem in Hadoop
by using Dynamic
Merging and
Indexing Scheme

Shubham
Bhandari, Suraj
Chougale, Deepak
Pandit, Suraj Sawat

In this paper, instead of
worn one NameNode for
shop the metadata, NHAR
uses manifold
NameNodes so that
NHAR lessen the freight
of a sincere NameNode in
symbol amount.

NHAR uses manifold
NameNodes due to
which the
Load/NameNode is way
fall.

6 Analysis of
Hadoop over SAP
software solutions

Veena V
Deolankar, Nupoor
Deshpande,
Mandar Lokhande

In this paper, attempt has
been made to prove that
Hadoop can be used for
large data processing as
compared to SAP
software solutions.

This paper provides the
brief introduction of
Hadoop and
disadvantages of using
SAP on large scale
industries.

7 Google File
System and
Hadoop Distributed
File System- An
Analogy

Dr. A.P. Mittal, Dr.
Vanita Jain, Tanuj
Ahuja

With ever-increasing data,
a reliable and easy to use
storage solution has
become a major concern
for computing.
Distributed File Systems
tries to address this issue
and provides means to
efficiently store and
process these huge
datasets.

To effectively handle
hard drive failures,
power failures, router
failures, network
maintenance, bad
memory, rack moves,
misconfigurations,
datacenter migrations
across hundreds of
thousands or millions of
machines requires
significantly better error
monitoring, tooling and
auto recovery.

8 Data Security in
Hadoop Distributed
File System

Sharifnawaj Y.
Inamdar, Ajit H.
Jadhav, Rohit B.
Desai, Pravin S.
Shinde, Indrajeet
M. Ghadage, Amit
A. Gaikwad.

In this, security of HDFS
is implemented using
encryption of file which is
to be stored at HDFS so a
real-time encryption
algorithm is used.
Encryption using AES
results into growing of
file size to double of
original file and hence file
upload time also increases
so this technique removes
this drawback.

Encryption/decryption,
authentication and
authorization are the
techniques those much
supportive to secure
information at Hadoop
Distributed File System.
In future work, subject
prompts produce
Hadoop with a wide
range of security
techniques for securing
information and
additionally secure
execution of job.

A. Limitation in Existing System
1) Decreasing the performance by accepting the small files and large files (i.e. whose size is smaller and larger than the block size

of Hadoop respectively).
2) Access time for reading a file is greatly high.
3) Access efficiency is low of NameNode.
4) There is no automatic fault tolerance for NameNode failure.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1937 ©IJRASET: All Rights are Reserved

5) As compared to GFS, hadoop cluster provides less error monitoring, tooling, and auto-recovery to effectively handle hard drive
failures, power failures, router failures, network maintenance, bad memory, rack moves, misconfigurations, datacenter
migrations across hundreds of thousands or millions of machines.

6) Hadoop not have any sort of security system so it uses techniques like encryption/decryption, authentication and authorization
to secure information at Hadoop Distributed File System.

III. PROPOSED ARCHITECTURE FOR SMALL FILE STORAGE
In the improved architecture of HDFS (shown in fig-2), it basically has three layers: user layer, data processing layer and the storage
layer based on HDFS.

 User Layer

 Data Processing Layer

 Data Pror

 Storage Layer

Fig-2: Proposed architecture of HDFS for small files

1) User Layer: This layer considered as the entry of the input of the whole store system which gives an interface to the user to
upload file, browse file and download file

2) Storage Layer: This is the place where data resides and also it is the most critical layer of the whole store system. It have HDFS
server which provides reliable and persistent storage capabilities.

A. Processing Layer
HDFS has the limited capability to support small file, this layer is designed basically for the same purpose. It mainly has four
functional units:
1) File Judging Unit
2) File Processing Unit
3) File Merging Unit
4) HDFS Client.

B. Index File for Files

Client

File Judging Unit File Processing Unit

File Merging Unit

Proceeded files

Compute
Remaining File

HDFS Client

Data Node

Data Node

Data Node

Name Node

HDFS Cluster

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1938 ©IJRASET: All Rights are Reserved

1) File Judging Unit: Its main purpose is to determine the size of the file and checks if there is any need of merging process. It the
file of user is of small size then there is need of merging process and that file is sent to the file processing unit. Otherwise, the
file is directly sent to HDFS Client.[7]

2) File Processing Unit: The functions of file processing is to receive files from the file judging unit, it counts the size of the files,
on the basis of order and size of small files it form an incremental offset from start and generate temporary index file
(TempIndex). When the size and offset of small files is stored, it sends the small files and the corresponding temporary index
sequentially to the file merging unit.[7]

3) File Merging Unit: The main function of this unit is merging the files. It merges the small files according to the order of small
files. The temporary index files are merges generating a merged index file as shown fig-4. The actual content of small files is
stored in the merged file. It records the merged index files of small files by <key, value> format. There is a unique value for
retrieving small files which records the critical information of the small file and it is known as key. This records the offset of
small file and length of small file. The end position of small file can be derived as “key_value + offset_length”.
When the small file is read then the key in merged index file is obtained according to the name of the small file then value is
got by the key and resolved to obtain the offset and length of small file so the end position of small file can be derived. The
small file in the merged file can be got by the start and end position of small file.
There also exist a block which check out the proceeded files and hence update the counter by reporting to file judging unit that
the files are processed and side by side it computes the remaining files so that in any case if number of files finishes then it
directly sends them to the HDFS client otherwise files will go to file judging unit.

4) HDFS Client: HDFS write the received data in the stored layer. It establishes a connection between NameNode and DataNode
with distributed file system instance. It notifies NameNode that which DataNode is used to write data block. The data writing
operation is completed by calling the relevant document operating API provided by HDFS. If the file is of large size then the
processing is same as writing otherwise the merged file and the corresponding merged index file are stored together on the
same DataNode. The id of merged file and merged index file is same and the merged index file is protected by DataNode
which is transparent for NameNode. When merging index file is successful then merged file is loaded into the memory. To
speed up the read speed after first reading of small files, the merging index file is loaded into the cache. The merge block

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1939 ©IJRASET: All Rights are Reserved

index file is very small and the number of data blocks on the DataNode is limited as compared with entire cluster therefore
these index files occupies very little memory of DataNode.[7] File processing flow in processing layer is shown in figure-3.

Fig-3: Processing flow in Data Processing Layer

The system takes the input from the user so that it gets data/file from the user. After get data/file from the user, compute the size of
file. If the size of file is small then send this for merging process, if size of file is big then directly send data to the HDFS Client.
Now, when small files merge by the merging process, so it will check for the condition that all the files are processed or not. If all
files processed then it directly sends them to the HDFS Client else it will send them to the size computation unit of file and then
again checks for the size of file and performs merges operation if needed.

PROCEDURE: Data Processing Layer
[For all Files of the client]
STEP-1: Read ith file/doc of client
 size_of_filei = fileJudging_Unit(filei)
[File Processing Unit]

STEP 2: Check Condition for Merging
 If (size_of_filei < threshold) // File is small
 Then:
 else if(allFileProcessed!=True)
 Then
 merged_block_index = FileMergingUnit(filei , size_of_filei)
 data= merged_block_index;
 return(data)

Client

Get Data/File

Compute
the size of

file

Merging Process

All files
processed

HDFS Client

Big

Small

No

Yes

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1940 ©IJRASET: All Rights are Reserved

 End Else if
 End If
 else
 do
 data=filei;
STEP 3: [HDFS Client is to write the received data to the HDFS in the stored layer]

 hdfs_Client (data);
 End Else
 STEP 4: Repeat Steps 1-3 while all files are not proceed.
 STEP 5: Exit.

STEP-1: Read the document file of the client so that file goes to the File Judging Unit to check the size of file so that it can go for
further processing to File Processing Data.
STEP-2: Now it check condition for merging
If threshold value is greater than size of file then it means that file is small. If all files are not processed then merged_block_index
get the file and also the size of file and data is stored in merged_block_index.
Otherwise if size of file is greater than the threshold value then file of client will directly stored in the data.
STEP-3: Now HDFS Client is to write the received data to the HDFS in the stored layer that is hdfs_Client (data).
STEP-4: Repeat the step from 1-3 until all files are processed.
STEP-5: Exit.

C. Comparative Study and Analysis
Table 2 shows the comparative analysis of five methods to deal with small files problem in HDFS. The very first method HAR
provides high scalability by reducing namespace usage and reading efficiency of files. There is a drastic change in reduce operation
before and after archiving files which shows that there is increase in performance time.
With proposed architecture for efficient utilization of Hadoop Distributed File System writing and accessing performance of small
files greatly increases and the average memory usage ratio of proposed architecture of HDFS is decreases as compared to original
HDFS.

Table-2: Comparison & Analysis
 Paper Name

Parameters Used

Reduction
of data at
Namenode
in HDFS
using
Harballing
Technique
[41]

An
improved
small file
processing
method for
HDFS[42]

Efficient
Way for
Handling
Small Files
using
Extended
HDFS[43]

Improving
Performance
of small-file
Accessing
in
Hadoop[44]

An
Innovative
Strategy for
Improved
Processing
of Small
Files in
Hadoop[45]

Method Archive-
Based

Index-
Based

Index-
Based

Archive-
Based

InputFormat-
Based

Positioning Name Node Data Node Name
Node

NameNode Name Node

Memory Usage Very Low Low Moderate Slightly
High

High

Reading Efficiency /
Addressing Time

Moderate Moderate High High Very high

Performance Moderate Moderate High High Very high
Overhead Slight High Low Low Slight

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue V, May 2018- Available at www.ijraset.com

1941 ©IJRASET: All Rights are Reserved

Proposed HDFS architecture allows for greater utilization of HDFS resources by providing more efficient metadata management for
small files. Proposed Architecture only maintains the file metadata for each small file and not the block metadata. The block
metadata is maintained by the NameNode for the single combined file alone and not for every single small file. This accounts for the
reduced memory usage in the Proposed HDFS Architecture. It can improve the efficiency of accessing small files and reduces the
metadata footprint in NameNode’s main memory.

IV. CONCLUSION AND FUTURE WORK
This paper gives an insight of the architecture of storage of small files in Hadoop Distributed File Systems by providing efficient
metadata management. In this paper the storage of file done on three layers of HDFS architecture. The HDFS file stored process is
improved. It maintains the file metadata for each small file and not the block metadata. The block metadata is maintained by the
NameNode for the single combined file alone and not for every single small file. This accounts for the reduced memory usage in the
Proposed HDFS Architecture. It provides better access and storage efficiency of small files. In future work, the implementation of
the above will be done.

REFERENCES
[1] Munde, Kusum; Jahan, Nusrat; “Hadoop Architecture and Applications”, IJIRSET (International Journal of Innovative Research in Science, Engineering and

Technology), Nov-2016, ISSN(Online): 2319-8753, ISSN(Print): 2347-6710, pp19090-19094.
[2] Bhandari, Shubham; Chougale, Suraj; Pandit, Deepak; Sawat, Suraj; “An approach to solve a Small File problem in Hadoop by using Dynamic Merging and

Indexing Scheme”, IJRITCC (International Journal on Recent and Innovation Trends in Computing and Communication), Nov-2016, ISSN: 2321-8169, pp227-
230.

[3] Y. Inamdar, Sharifnawaj; H.Jadhav, Ajit; B.Desai, Rohit; S.Shinde, Pravin; M.Ghadage, Indrajeet; A. Gaikwad, Amit; “Data Security in Hadoop Distributed
File System”, IRJET (International Research Journal of Engineering and Technology), Apr-2016, e-ISSN: 2395-0056, p-ISSN: 2395-0072, pp939-944.

[4] Mittal, A.P.; Jain, Vanita; Ahuja, Tanuj; “Google File System and Hadoop Distributed File System-An Analogy”, IJIACS (International Journal of Innovations
& Advancement in Computer Science), March-2015, ISSN 2347-8616, pp626-636.

[5] Dhaulakhandi, Prachi, “A Study of Hadoop Ecosystem”, IJRSM (International Journal of Research & Management), Aug-2016, ISSN: 2349-5197, pp9-12.
[6] V.Deolankar, Veena; Deshpande, Nupoor; Lokhande, Mandar; “Analysis of Hadoop over SAP Software Solutions”, IJRSR (International Journal of Recent

Scientific Research), Mar-2016, ISSN: 0976-3031, pp9212-9215.
[7] Changtong, Liu, “An improved HDFS for small file”, ICACT, Feb-3, 2016, pp478-481.
[8] Gohil P, Panchal B, Dhobi J S., “A novel approach to improve the performance of Hadoop in handling of small files”, Electrical, Computer and

Communication Technologies (ICECCT), 2015 IEEE International Conference on. IEEE, pp. 1-5.

