

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: IV Month of publication: April 2018

DOI: http://doi.org/10.22214/ijraset.2018.4642

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Strong form of Fuzzy Closed Sets in Fuzzy Topological Space

D. Ananthi¹, K. Ygapriya², G. Bhuvana³, N. Sathishkumar⁴, R. Ragupathiraja⁵ ^{1, 2, 3, 4, 5}Asst. Prof Edayathangudy G. S., Pillay Arts and Science College Nagapattinam

Abstract: In this paper we have introduced a new class of fuzzy sets called fuzzy strongly $(gsp)^*$ -closed sets, properties of this set are investigated and we introduce new fuzzy spaces namely, fuzzy $T_s(gsp)^*$ -space, fuzzy $gT_s(gsp)^*$ -space, fuzzy $g^*T_s(gsp)^*$ -space and fuzzy $g^**T_s(gsp)^*$ -space. Further strongly $(gsp)^*$ -continuous mappings are also introduced and investigated. Keywords: fuzzy Strongly $(gsp)^*$ -closed sets, fuzzy Strongly $(gsp)^*$ -continuous maps, fuzzy $T_s(gsp)^*$ -space, fuzzy $gT_s(gsp)^*$ -space, fuzzy $g^*T_s(gsp)^*$ -space and fuzzy $g^*T_s(gsp)^*$ -space.

I. PRELIMINARIES

Throughout this paper (X,τ) and (Y, σ) represent non-empty fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a fuzzy subset A of a space (X,τ) , cl(A) and int(A) denote the fuzzy closure and the fuzzy interior of A respectively.

A. Definition 1.1

A Subset A of fuzzy topological space $(X{,}\tau)$ is called;

- 1) Fuzzy semi open set if $A \subseteq cl(int(A))$ and a fuzzy semi-closed set if $int(cl(A)) \subseteq A$.
- 2) Fuzzy semi pre-open set if $A \subseteq cl(int(cl(A)) and a fuzzy semi-pre closed set if int(cl(int(A))) \subset A$
- *3)* Fuzzy regular -open set if int(cl(A))=A and a fuzzy regular -closed.

B. Definition 1.2

A Subset A of fuzzy topological space (X, τ) is called;

- 1) Fuzzy generalized closed set (briefly fuzzy g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy open in (X,τ)
- 2) Fuzzy g*-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy g open in (X,τ)
- 3) Fuzzy g^{**}-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy g^{*} open in (X, τ)
- 4) Fuzzy wg closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy open in (X,τ)
- 5) Fuzzy regular generalized closed set (briefly fuzzy rg-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy regular open in (X,τ)
- 6) Fuzzy sg^{**} closed set if scl(A) \subseteq U whenever A \subseteq U and U is fuzzy g^{**} open in (X, τ)
- 7) Fuzzy sg^{*} closed set if scl(A) \subseteq U whenever A \subseteq U and U is fuzzy g^{*} open in (X, τ)
- 8) Fuzzy generalized semi-closed set (briefly fuzzy gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy open in (X, τ)
- 9) Fuzzy gsp closed set if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy open in (X,τ)
- 10) Fuzzy (gsp)*- closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U fuzzy gsp is open in (X,τ)

C. Definition 1.3

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called ;

- 1) fuzzy g continuous if $f^{-1}(V)$ is a fuzzy g-closed set of (X,τ) for every fuzzy closed set V of (Y,σ)
- 2) fuzzy g^* continuous if $f^{-1}(V)$ is a fuzzy g^* -closed set of (X,τ) for every fuzzy closed set V of (Y,σ)
- 3) fuzzy g^{**} continuous if $f^1(V)$ is a fuzzy g^{**} -closed set of (X,τ) for every fuzzy closed set V of (Y,σ)
- 4) fuzzy rg continuous if f $^{-1}$ (V) is a fuzzy rg -closed set of (X, τ) for every fuzzy closed set V of (Y, σ)
- 5) fuzzy wg continuous if $f^{-1}(V)$ is a fuzzy wg -closed set of (X,τ) for every fuzzy closed set V of (Y,σ)
- 6) fuzzy $(gsp)^*$ continuous if $f^{-1}(V)$ is a fuzzy $(gsp)^*$ -closed set of (X,τ) for every fuzzy closed set V of (Y,σ)

Volume 6 Issue IV, April 2018- Available at www.ijraset.com

D. Definition 1.4

- A fuzzy topological space (X , τ) is said to be;
- 1) Fuzzy $T_{1/2}^*$ space if every fuzzy g*-closed set in it is fuzzy closed.
- 2) Fuzzy T_d space if every fuzzy gs -closed set in it is fuzzy g- closed.

II. FUZZY STRONGLY (GSP)* - CLOSED SETS IN FUZZY TOPOLOGICAL SPACE

We introduce the following definition

A. Definition 2.1

A subset A of a fuzzy Topological space (X, τ) is said to be a fuzzy strongly $(gsp)^*$ -closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy gsp-open.

- 1) Lemma 2.1: Every fuzzy closed set is fuzzy strongly (gsp)*-closed.
- 2) Proof: Let A be a fuzzy closed. Then cl(A) = A. Let us prove that A is fuzzy strongly (gsp)* closed. Let A⊆U and U be fuzzy gsp-open. Then cl(A) ⊆U. Since A is fuzzy closed . cl(int(A)) ⊆cl(A) ⊂U. Then cl(int(A)) ⊂ U whenever A ⊆U and U is fuzzy gsp open.so A is fuzzy strongly (gsp)* closed. The converse of the above proposition need not be true in general as seen in the following example.

B. Lemma 2.2

Every fuzzy g-closed set is fuzzy strongly (gsp)*-closed.

1) Proof: Let A be fuzzy g-closed. Then cl(A) ⊆U Whenever A ⊆U and U is fuzzy open in (X, τ).To prove A is fuzzy strongly (gsp)* - closed. Then A ⊆U and U be fuzzy (gsp) open. We have cl(A) ⊆U Whenever A ⊆U and U is fuzzy open in (X, τ).Since every fuzzy open set is (fuzzy gsp) –open. We have cl(A) ⊆U Whenever A ⊆U and U is fuzzy (gsp)-open in (X, τ).But cl(int(A)) ⊆cl(A) ⊆U whenever A ⊆U and U is (fuzzy gsp)- open in (X, τ) then cl(int(A)) ⊆U whenever A ⊆U and U is fuzzy (gsp) - open in (X, τ) so A is fuzzy strongly (gsp)*-closed. The converse of the above proposition need not be true in general as seen in the following example.

C. Lemma 2.3

Every fuzzy g*-closed set is fuzzy strongly (gsp)* - closed.

The converse of the above proposition need not be true in general as seen in the following example.

D. Lemma 2.4

Every fuzzy rg – closed set is fuzzy strongly $(gsp)^*$ - closed.

- 1) Proof: Let A be fuzzy rg-closed set. Then $cl(A) \subseteq U$ Whenever $A \subseteq U$ and U is fuzzy regular-open in (X, τ) . To prove A is fuzzy strongly $(gsp)^*$ closed. Let $A \subseteq U$ and U be fuzzy (gsp) open. Since every fuzzy regular-open set is fuzzy (gsp)-open. We have $cl(A) \subseteq U$ Whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . But $cl(int(A)) \subseteq cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (gsp)-open in (X, τ) . So A is fuzzy strongly $(gsp)^*$ -closed.
- 2) Remark 2.1: fuzzy Strongly (gsp)* closedness is independent of fuzzy semi-closedness

E. Lemma 2.5

Every fuzzy $(gsp)^*$ - closed set is fuzzy strongly $(gsp)^*$ - closed set

1) Proof: Let A be fuzzy (gsp)* -closed set .Then cl(A) ⊆U Whenever A ⊆U and U is fuzzy gsp-open in (X, τ).To prove A is fuzzy strongly (gsp)* - closed. Let A ⊆U and U be fuzzy (gsp) open. Since every fuzzy (gsp)* - open set is fuzzy (gsp)-open.We have cl(A) ⊆U Whenever A ⊆U and U is fuzzy (gsp)-open in (X, τ).But cl(int(A)) ⊆cl(A) ⊆U whenever A ⊆U and U is fuzzy (gsp)-open in (X, τ) so A is fuzzy strongly (gsp)* -closed.The converse of the above proposition need not be true in general as seen in the following example.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

- 2) *Theorem 2.1:* Every fuzzy g** -closed set is fuzzy strongly (gsp)* -closed. The converse of the above proposition need not be true in general.
- 3) Remark 2.2: fuzzy Strongly (gsp)* -closed is independent of fuzzy sg**-closed.
- 4) Remark 2.3: Strongly fuzzy (gsp)* -closed is independent of fuzzy sg* -closed.

F. Lemma 2.6

Every fuzzy wg-closed set is fuzzy strongly (gsp)* - closed.

Proof: Let A be fuzzy wg-closed .Then cl(int(A)) ⊆U Whenever A ⊆U and U is fuzzy open in (X, τ).To prove A is fuzzy strongly (gsp)* -closed .Let A ⊆U and U be fuzzy (gsp) open. Since every fuzzy wg-open set is fuzzy (gsp)- open .We have cl(int(A)) ⊆U whenever A ⊆U and U is fuzzy (gsp)-open in (X, τ) then cl(int(A)) ⊆U whenever A ⊆U and U is fuzzy (gsp)-open in (X, τ). A is fuzzy strongly (gsp)* -closed.

III. FUZZY STRONGLY (GSP)* -CONTINUOUS MAPS

We introduce the following definitions

A. Definition 3.1

A function $f:(X,\tau) \to (Y,\sigma)$ is called fuzzy Strongly (gsp)* -continuous if $f^{-1}(V)$ is a fuzzy strongly (gsp)* -closed set in (X,τ) for every fuzzy closed set V of (Y,σ) .

fuzzy continuous map is fuzzy strongly (gsp)* -continuous

Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy continuous map. Let us prove that f is fuzzy strongly $(gsp)^*$ - continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy continuous f⁻¹(F) is closed in (X,τ) then f⁻¹(F) is fuzzy strongly $(gsp)^*$ -closed so f is fuzzy strongly

B. Theorem 3.2

Every fuzzy g-continuous map is fuzzy strongly (gsp)* -continuous

1) Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g-continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy g-continuous $f^{-1}(F)$ is fuzzy g-closed in (X,τ) . then $f^{-1}(F)$ is fuzzy strongly $(gsp)^*$ -closed so f is fuzzy strongly $(gsp)^*$ - continuous fuzzy closed g^{**} -closed fuzzy g-closed fuzzy g^* -closed fuzzy g^* -closed fuzzy g-closed fuzzy $(gsp)^*$ -closed fuzzy g^* -closed g^* -cl

C. Theorem 3.3

Every g* -continuous map is strongly (gsp)* -continuous.

1) Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a g* -continuous. Let F be a closed set in (Y,σ) . Since f is g* -continuous f⁻¹(F) is g* - closed in (X,τ) . By Theorem (3.6), f⁻¹(F) is strongly (gsp)* -closed so f is strongly (gsp)* -continuous The converse of the above Theorem is not true

D. Theorem 3.4

Every fuzzy g** -continuous map is fuzzy strongly (gsp)* -continuous.

1) Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g^{**} -continuous. Let F be a fuzzy closed set in (Y,σ) . Since f is fuzzy g^{**} - continuous $g^{-1}(F)$ is g^{**} -closed in (X,τ) . then $f^{-1}(F)$ is fuzzy strongly $(gsp)^*$ -closed so f is fuzzy strongly $(gsp)^*$ -continuous The converse of the above Theorem is not true.

IV. APPLICATIONS OF FUZZY STRONGLY (GSP)* - CLOSED SETS

As application of fuzzy strongly $(gsp)^*$ -closed sets, new spaces, namely fuzzy $Ts(gsp)^*$ space , $gTs(gsp)^*$ space , fuzzy $g^*T s(gsp)^*$, fuzzy $g^*Ts(gsp)^*$ space are introduced. We introduced the following definitions.

A. Definition 4.1

A fuzzy space (X, τ) is called a fuzzy Ts(gsp)* -space if every fuzzy strongly (gsp)* - closed set is closed.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

B. Definition 4.2

A fuzzy space (X, τ) is called a fuzzy gTs(gsp)* - space if every fuzzy strongly (gsp)* - closed set is fuzzy g closed.

C. Definition 4.3

A fuzzy space (X, τ) is called a fuzzy g*Ts(gsp)* -space if every fuzzy strongly (gsp)* - closed set is g*-closed

D. Definition 4.4

A fuzzy space (X, τ) is called a fuzzy $g^{**}Ts(gsp)^*$ -space if every fuzzy strongly $(gsp)^*$ - closed set is fuzzy g^{**} -closed.

- 2) Theorem 4.1: Every fuzzy $Ts(gsp)^*$ -space is fuzzy $T_{1/2}^*$ -space.
- 3) Proof: Let (X, τ) be a fuzzy Ts(gsp)* space. Let us prove that (X, τ) is a fuzzy $T_{1/2}^*$ space. Let A be a fuzzy g* closed set. Since every fuzzy g* - closed set is fuzzy strongly (gsp)* -closed, A is fuzzy strongly (gsp)* - closed. Since (X, τ) is a fuzzy Ts(gsp)* - space, A is fuzzy closed. (X, τ) is a fuzzy $T_{1/2}^*$ - space.
- 4) Theorem 4.2: Every fuzzy Ts(gsp)* -space is fuzzy gTs(gsp)*-space.
- 5) *Proof:* Let A be a fuzzy strongly $(gsp)^*$ -closed set. Then A is fuzzy closed. Since the fuzzy space is $Ts(gsp)^*$ space. And every closed set is fuzzy g-closed .Hence A is fuzzy g- closed. (X,τ) is a fuzzy gTs $(gsp)^*$ space. The converse is not true.
- 6) Theorem 4.3: Every fuzzy g*Ts(gsp)* -space is fuzzy gTs(gsp)* -space.
- 7) Proof: Let A be a fuzzy strongly (gsp)* -closed .Then A is fuzzy g* -closed, since the fuzzy space is a fuzzy g*Ts(gsp)* -space since. Every fuzzy g* -closed set is fuzzy g-closed .Hence A is fuzzy g-closed then (X,τ) is a fuzzy gTs(gsp)* -space. The converse is not true.
- 8) Theorem 4.4: Every g*Ts(gsp)* -space is g**Ts(gsp)* -space.
- 9) Proof: Let A be a strongly (gsp)*-closed set. Then A is g* -closed, since the space is a g*Ts(gsp)*. Since Every g**-closed set is g*-closed .Hence A is g**-closed. (X,τ) is a g**Ts(gsp)* -space.

REFERENCE

- [1]. B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, fuzzy Sets and Systems 35(3) (1990), 345–355.
- [2]. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3]. C.W. Baker on preserving g-super closed sets Kyungpook Math. J. 36(1996), 195-199.
- [4]. G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86(1) (1997), 93–100.
- [5]. G. Balasubramanian and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. CalcuttaMath. Soc. 92(4) (2000), 305–312.
- [6]. G. Balasubramanian, On fuzzy pre-separation axioms, Bull. Calcutta Math. Soc. 90(6) (1998),427–434.
- [7]. K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1) (1981), 14–32.
- [8]. K. M. Abd El-Hakeim, Generalized semi-continuous mappings in fuzzy topological spaces, J. Fuzzy Math. 7(3) (1999), 577-589.
- [9]. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
- [10]. M.K. Mishra et all on "Fuzzy super continuity" International Review in Fuzzy Mathematics July -December2012.
- [11]. M.K. Mishra M. Shukla M. Fuzzy Regular Generalized Super Closed Set" International Journal of Scientific and Research December issue July December 2012.
- [12]. M.K. Mishra, et all on "Fuzzy super closed set" International Journal International Journal of Mathematics and applied Statistics.
- [13]. P. M. Pu and Y. M. Liu Fuzzy topology I Neighborhood structure of a fuzzy point and More-Smith Convergence. J. Math. Anal. Appl. 76(1980) ,571-594.
- [14]. P. M. Pu and Y. M. Liu Fuzzy topology II Product and quotient spaces J.Math. Anal. Appl. 77(1980) 20-37.
- [15]. P. M. Pu, and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(2) (1980), 571– 599.
- [16]. R. K. Saraf and M. Khanna, On gs-closed sets in fuzzy topology, J. Indian Acad. Math. 25(1),(2003), 133-143.
- [17]. R. K. Saraf, and M. Khanna, Fuzzy generalized semi pre closed sets, J. Tripura Math. Soc.3(2001) 59-68.
- [18]. R. K. Saraf, and S. Mishra, Fg_-closed sets, J. Tripura Math. Soc. 2 (2000) 27-32.
- [19]. R. K. Saraf, M. Caldas and S. Mishra, Results via Fg_-closed sets and Fg-closed sets, Preprint.
- [20]. T. H. Yalva, c, Semi-interior and semi closure of a fuzzy set, J. Math. Anal. Appl. 132(2) (1988),356–364.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)