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Abstract: Let 푺(푮) be the subdivision graph of 푮. The lict graph of 풏[푺(푮)] of 푺(푮) is a graph whose vertex set is the union of 
the set of edges and set of cutvertices of 푺(푮) in which two vertices adjacent if and only if the corresponding members are 
adjacent or incident. A subset 푫풅 of 푽[풏(푺(푮))] is double dominating set of 풏[푺(푮)] if for every vertex 풗 ∈ 푽 풏 푺(푮) , 푵[풗]∩
푫풅 ≥ ퟐ, that is 풗 is in 푫풅 and has at least one neighbour in 푫풅 or 풗 is in 푽[풏(푺(푮))] − 푫풅 and has at least two neighbours in 
푫풅. The lict subdivision double dominating number 휸풅풅풏풔(푮) is a minimum cardinality of the lict subdivision double dominating 
set of 푮 and is denoted by 휸풅풅풏풔(푮). In this paper, we establish some sharp bounds for 휸풅풅풏풔(푮). Also some upper and lower 
bounds on 휸풅풅풏풔(푮) in terms of the vertices, edges and other different parameters of 푮and not in terms of the element of 
풏[푺(푮)]. Further, its relation with other different dominating parameters is also obtained. 
Subject classification number: 푨푴푺− ퟎퟓ푪ퟔퟗ,ퟎퟓ푪ퟕퟎ. 
Keyword: Lict subdivision graph/ Dominating set/Double domination 

I. INTRODUCTION 
In this paper, all the graphs considered here are simple, finite, non-trivial, undirected and connected. The vertex set and edge set of 
graph 퐺 are denoted by 푉(퐺) = 푝 and 퐸(퐺) = 푞 respectively. Terms not defined here are used in the sense of Harary [1]. The 
neighbourhood of a vertex 푣 ∈ 푉 is defined by 푁(푣) = { 푢 ∈ 푉 푢푣⁄ ∈ 퐸}. The close neighbourhood of a vertex푣 is 푁[푣] = 푁(푣) ∪
{푣}. The order |푉(퐺)| of 퐺 is denoted by 푝. The degree of 푣 is 푑(푣) = |푁(푣)|. The maximum degree of a graph 퐺 is denoted by 
∆(퐺) and the minimum degree is denoted by 훿(퐺). A vertex cover in a graph 퐺 is a set of vertices that covers all the edges of G. 
The vertex covering number 훼 (퐺) is the minimum cardinality of a vertex cover in 퐺. A set of vertices in a graph 퐺 is called 
independent set if no two vertices in the set are adjacent. The vertex independence number 훽 (퐺) is the maximum cardinality of an 
independent set of vertices. For a vertex 푣 of a graph 퐺, the eccentricity 푒(푣) is the distance between 푣 and a vertex farthest from 푣. 
The maximum eccentricity is its diameter, 푑푖푎푚(퐺). A set 퐷 of vertices in a graph 퐺 is called a dominating set of 퐺 if every vertex 
in 푉 − 퐷  is adjacent to some vertex in 퐷 . The domination number of 퐺 , denoted by 훾(퐺)  is the minimum cardinality of a 
dominating set. The domination in graphs with many variations is now well studied in graph theory. A thorough study of 
domination appears in [2]. Let 푆(퐺) be the subdivision graph of 퐺. The lict graph of 푛[푆(퐺)] of 푆(퐺) is a graph whose vertex set is 
the union of the set of edges and set of cutvertices of 푆(퐺) in which two vertices adjacent if and only if the corresponding members 
are adjacent or incident. A subset 퐷  of 푉[푛(푆(퐺))]  is double dominating set of 푛[푆(퐺)]  if for every vertex 푣 ∈
푉 푛 푆(퐺) , |푁[푣] ∩ 퐷 | ≥ 2, that is 푣 is in 퐷  and has at least one neighbour in 퐷  or 푣 is in 푉[푛(푆(퐺))] − 퐷  and has at least 
two neighbours in 퐷 . The lict subdivision double dominating number 훾 (퐺) is a minimum cardinality of the lict subdivision 
double dominating set of 퐺 and is denoted by 훾 (퐺). The graph valued function related to domination parameters have been 
studied in [4,5,6,7,9,10,11,12,13,14,15]. Further in [8], the subdivision of 퐺 with graphvalued function and related with domination 
parameters has been established. In this paper, we establish some sharp bounds for 훾 (퐺). Also some upper and lower bounds on 
훾 (퐺) in terms of the vertices, edges and other different parameters of 퐺 and not in terms of the element of 푛[푆(퐺)]. Further, its 
relation with other different dominating parameters is also obtained.  

II. RESULTS 

We need the following theorems to prove our results. 

1) Theorem A[1]: For any path P , the vertex covering number is 훼 (푃 ) =  
 if n is even

 if n is odd
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2) Theorem B[1]: For any path 푃 , the edge covering number is 훼 (P ) =
 if n is even

 if n is odd
 

3) Theorem C[2]: A graph 퐺 is eulerian if and only if 퐺 is of even degree.  
4) Theorem D[3]: For any connected graph 퐺, with 푝 ≥ 4, 퐺 ≠ 퐾 , 훾 = 훼 (퐺).  

 
III. THE LICT SUBDIVISION DOUBLE DOMINATION NUMBER OF A GRAPH. 

In this section, we characterise the lict subdivision double domination number by giving a necessary and sufficient condition for it 
and also establish the conditions for a lict subdivision double dominating set  

1) Theorem 3.1: A double dominating set 퐷  of the 푛[푆(퐺)], is a lict subdivision double dominating set of  퐺, if and only if the 
following conditions hold.                                                                                                                               (i) 푛[푆(퐺)] − 퐷  has 
at least two vertices.                                                                                                                           (ii) For any two vertices 푢, 푣 ∈
푉[푛(퐺)] −퐷 , every 푢푣 path contains a vertex of 퐷 .                    

We now give a characterization of lict subdivision double dominating set of 퐺 which is minimal.  
2) Theorem 3.2: A double dominating set 퐷  of the 푛[푆(퐺)] is minimal if and only if for every vertex 푣 ∈ 퐷  either (i) |푁(푣) ∩

퐷 | ≤ 2 or                                                                                                                                                   (ii) there ∃ a vertex 푢,∈
푉[푛(퐺)] −퐷  such that |푁(푣) ∩ 퐷 | = 2 and 푢 ∈ 푁(푣).                                                                                                               

Proof: Let 퐷  be a minimal lict subdivision double dominating set of 퐺 . Suppose that there exists a vertex 푣 ∈ 퐷  for which 
|푁(푣) ∩ 퐷 | ≥ 2 and for every vertex 푢 ∈ 푉 푛 푆(퐺) − 퐷 , either  |푁(푣) ∩ 퐷 | ≥ 2 or 푢 ∉ 푁(푣). Then consider퐷 , = 퐷 −
{푣}, since 푣 is adjacent to at least two vertices of 퐷 , it follows that 퐷 , is double dominating set of 푛[푆(퐺)], which is contradicting 
to  the minimality of 퐷 .  Conversely, assume that 퐷  is double dominating set of 푛[푆(퐺)] satisfying conditions (i) and (ii). For that 
consider the set 퐷 , = 퐷 − {푣} for any vertex 푣 ∈ 퐷 . If condition (i) holds, then |푁(푣) ∩ 퐷 ,| ≤ 2, which implies that 퐷 , is not a 
double dominating set of 푛[푆(퐺)]. If the condition (ii) holds. Then there exists a vertex 푢 ∈ 푉 푛 푆(퐺) − 퐷 , such that |푁(푢) ∩
퐷 ,| = 2 and 푢 ∈ 푁(푣). But in this case that set 퐷 , would not double dominating to u and hence would not be a double dominating 
set of 푛[푆(퐺)]. Thus in both condition 퐷 , is not a double dominating set of 푛[푆(퐺)]. Therefore 퐷  is a minimal double dominating 
set of 푛[푆(퐺)].  

IV. LOWER BOUNDS FOR 휸풅풅풏풔(푮). 
We establish lower bounds for 훾 (퐺) in terms of elements of 퐺.                                
1) Theorem 4.1: For any connected (푝,푞) graph 퐺 with 푝 ≥ 2, + 1 ≤ 훾 (퐺). Equality hold if 퐺 is 푃 .  

Proof: Let 퐷 = {푣 ,푣 , … , 푣  } be a double dominating set of 푛[푆(퐺)]. By the definition of 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪
퐶(푆(퐺)). Let 퐷  be the double dominating set of 푛[푆(퐺)] such that any vertex 푣 ∈ 푉 푛 푆(퐺) −퐷 , |푁[푣] ∩ 퐷 | ≥ 2. Then 

{푉 푛 푆(퐺) −퐷  } contains at least one vertex which gives < < + 1 ≤ 훾 (퐺).  
2) Theorem 4.2: For any connected(푝,푞) graph 퐺 with 푝 ≥ 2, 훾 (퐺) ≤ 푝 + 푞 − 1.  
Proof: Let 퐺 be a (푝,푞) graph, then 푉[푆(퐺)] = 푝 + 푞. Let 퐹 = {푣 ,푣 , … , 푣  } be the set of vertices in 푆(퐺) and 퐹 ⊆ 푉[푆(퐺)] such 
that |퐹| = 훼 (푆(퐺)) similarly for 퐸 = {푒 , 푒 , … , 푒  } be the set of edges in 푆(퐺), 퐸 ⊆ 퐸[푆(퐺)] such that |퐸| = 훽 (푆(퐺) and by the 
definition of 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). Where 퐸(푆(퐺)) is the set of edges and 퐶(푆(퐺)) is the set of cutvertices 
in 푆(퐺). We consider a set 퐹 ⊆ 퐸(푆(퐺)). If 퐹 corresponding to such vertices 퐷 =  푣 ,푣 , … ,푣  ⊆ 푉[푛(푆(퐺))] such that 퐷 =
푉 푛 푆(퐺) − 퐶(푆(퐺)) and any vertex 푣 ∈ 푉 푛 푆(퐺) −퐷  is dominated by at least two vertices of 푛[푆(퐺)]. Thus 퐷  is double 
dominating set of 푛[푆(퐺)]. Now consider |퐷 | ≤ 훼 푆(퐺) + 훽 (푆(퐺) − 1 = 푉[푆(퐺)] − 1 = 푝 + 푞 − 1. Hence 훾 (퐺) ≤ 푝 +
푞 − 1. 
3) Theorem 4.3: For any connected (푝, 푞) graph퐺 with 푝 ≥ 3, 푝 + 훾(퐺) ≤ 훾 (퐺). Equality holds if 퐺 ≅ 푃 , 푝 ≥ 3.  
Proof: Let 퐷 = { 푣 ,푣 , … , 푣  }  be a minimal dominating set of 퐺  such that |퐷| = 훾(퐺) . Since in 푛 푆(퐺) , 푉 푛 푆(퐺) =
퐸(푆(퐺)) ∪ 퐶(푆(퐺)) . Further let 퐸 = {푒 ,푒 , … , 푒  }  be the set of all egdes which are incident to the vertices of 퐷  becomes 
퐸 푆(퐺) = 2퐸, in 푛 푆(퐺) . Since 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). Let 퐷 = { 푣 ,푣 , … ,푣  } ⊆ 퐸(푆(퐺)) ⊆ 푉[푛 푆(퐺) ] be the 
double dominating set of 푛 푆(퐺)  such that |푁[푣] ∩퐷 | ≥ 2. Then 퐷  form a minimal double dominating set in 푛[푆(퐺)]. Clearly 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

   Volume 6 Issue IV, April 2018- Available at www.ijraset.com 
     

4788 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

|퐸(푆(퐺))|− |푉(퐺)| ≥ |퐷|. Thus it follows that 훾 (퐺)− 푝 ≥ 훾(퐺). Hence 푝 + 훾(퐺) ≤ 훾 (퐺). For equality if 퐺 ≅ 푃 . Then 
in this case |퐷| = 1, further 푆(푃 ) = 푃 , 훾 (퐺) = 4. Hence 훾 (퐺) = 4 = 1 + 3 훾(퐺) + 푝.  
4) Theorem 4.4: For any connected (푝, 푞) graph 퐺 with 푝 ≥ 3, then 푑푖푎푚(퐺) + 2 ≤ 훾 (퐺).  
Proof: Let 퐼 = {푒 , 푒 , … , 푒  } ⊆ 퐸(퐺) be the set of edges which constitutes the longest path between any two distinct vertices of 퐺 
such that |퐼| = 푑푖푎푚(퐺). Let 퐷 = { 푣 ,푣 , … , 푣  } be the set of vertices in 푉 푛 푆(퐺)  such that for any vertex 푣 ∈ 푉 푛 푆(퐺) −
퐷  is adjacent to at least two vertices of 퐷  and |푁[푣] ∩퐷 | ≥ 2. It follows that |퐷 | ≥ 2 and the diametral path includes at least 
two vertices. Thus 푑푖푎푚 ≤ 훾 (퐺)− 2 it gives 푑푖푎푚(퐺) + 2 ≤ 훾 (퐺).  

5) Theorem 4.5: For any connected (푝, 푞) graph 퐺 with 푝 ≥ 2,  ( ( )) ≤ 훾 (퐺).  

Proof: Let 퐷 = { 푣 ,푣 , … , 푣  } ⊆ 푉 푛 푆(퐺)  be the set of vertices and every vertex 푣 ∈ 푉 푛 푆(퐺) −퐷  is adjacent to at least 
two vertices of 퐷 , thus 퐷  itself is a double dominating set of 푛[푆(퐺)]. Since 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). Then there 

exists a vertex 푣 ∈ 퐷  which is not adjacent to any vertex of 푉 푛 푆(퐺) . This implies that 푞 ≤ ( ) − (푝 − 훾 (퐺)). Which is 
2푞 ≤ 푝 − 푝 − 2푝 + 2훾 (퐺). Hence the result.  

6) Theorem 4.6: For any connected (푝, 푞) graph 퐺, 
∆( ) ≤ 훾 (퐺).  

Proof: Let 퐷  be a minimal double dominating set of 푛[푠(퐺)]. Since in 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). Let 푘 denote 
the number of edges between 퐷  and 푉 푛 푆(퐺) −퐷 . Since for any connected graph 퐺, there exists at least one vertex 푣 ∈ 푉(퐺) 
such that deg(푣) = ∆(퐺), 푘 ≤ ∆(퐺).훾 (퐺). Also since each vertex 푣 in 푉 푛 푆(퐺) − 퐷  is adjacent to at least two vertices in 

퐷 , 푘 ≥ 2(푝 − 훾 (퐺)). From these two inequalities, 2푝 − 2푝훾 (퐺) ≤ ∆(퐺).훾 (퐺). It follows that 
∆( ) ≤

∆( ) ≤

훾 (퐺).  
7) Theorem 4.7: For any non-trivial tree T of order 푝 with 푙 leaves and 푠 support vertices, (푝 − 푙 − 푠 + 4) ≤ 훾 (푇).  
Proof: To prove that if 푇 is a tree of order 푝 ≥ 2 with 푙 leaves and푠 support vertices then 훾 (푇) ≥ (푝 − 푙 − 푠 + 4). We use 
mathematical induction on p. Let 푝 = 2, then 푇 = 푃  and 푑푖푎푚(푇) = 1 it implies that 훾 (푇) = 푝 − 푙 − 푠 + 4 = 2. Let 푝 = 3 
then 푇 is a star and 푑푖푎푚(퐺) = 2, it implies that 훾 (푇) = (푝 − 푙 − 푠 + 4) = 4. Let 푝 = 4 then 푇 may be 푃  and 푑푖푎푚(퐺) = 3 it 
implies that that 훾 (푇) > (푝 − 푙 − 푠 + 4). For 푝 = 푛, 훾 (푇) > (푝 − 푙 − 푠 + 푛). Further it is also true for 푝 = 푛 + 1. Hence 
we obtain the desired result.  
8) Theorem 4.8: For any connected (푝, 푞) graph 퐺 with 푝 ≥ 2, 훾(퐺) + 1 ≤ 훾 (퐺). Equality hold if 퐺 is 퐾 . 
Proof: Let 퐷 = { 푣 ,푣 , … , 푣  }  be a minimal dominating set of 퐺  such that |퐷| = 훾(퐺) . Since in 푛 푆(퐺) , 푉 푛 푆(퐺) =
퐸(푆(퐺)) ∪ 퐶(푆(퐺)), where 퐸(푆(퐺)) is the set of edges and 퐶(푆(퐺)) is the set of cutvertices in 푆(퐺). We consider the following 
cases.  Case 1: Suppose 퐺 is a tree. Then clearly for any tree 푇, 퐷 = { 푣 ,푣 , … ,푣  } set of vertices in 푛[푆(퐺)] such that 퐷 =
푉 푛 푆(퐺) − 퐶(푆(퐺)) is dominated by at least two vertices of 푛[푆(퐺)]. Since the number of edges of 푆(퐺) are more than that of 
퐺 , which gives 푉(퐺) ⊂ 푉[푛 푆(퐺) ] . It follows that |퐷 | > |퐷| + 1  which gives 훾 (퐺) > 훾(퐺) + 1 .                      
Case 2: Suppose 퐺 is not a tree. Then there exists at least one cycle. Let D be a minimal dominating set of 퐺, then |퐷| = 훾(퐺). 
Suppose there exists a cycle of length 푙, then in 푆(퐺), the cycle length be 2푙. Let 퐸 = { 푒 ,푒 , … , 푒  } ⊆ 퐸[푆(퐺)], such that |퐸| =
훾 ,(퐺) . In 푛[푆(퐺)] , 푉[푛(푆(퐺)] = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)) . Suppose 퐹 ⊂ 퐶[푆(퐺)] . Then {퐸} ∪ {퐹} ⊆ 푉[푛 푆(퐺) ]  such that ∀푣 ∈
푉 푛 푆(퐺) − {퐸} ∪ {퐹}  is adjacent to at least two vertices of 푉[푆(퐺))] . Hence |퐸| ∪ |퐹|  is a minimal double dominating 
set 푛[푆(퐺))] such that |퐸| ∪ |퐹| = 훾 (퐺)−set. Clearly |퐷| ≤ |퐸| ∪ |퐹| which gives 훾(퐺) + 1 ≤ 훾 (퐺). For equality, let 퐺 =
퐾 , we have 훾(퐺) = 1. Further 푆(퐾 ) = 푃  and 푛[푆(퐾 )] = 퐶  and 훾 (퐺) = 2, 훾(퐺) = 1. Hence 훾 (퐺) = 2 = 훾(퐺) + 1.  
9) Theorem 4.9: For any connected (푝, 푞) graph 퐺, ( ( ) ≤ 훾 (퐺). 

Proof: Let 퐷  be a 훾 -set of 퐺. Since in 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). Let 푡  denote the number of edges in 
푛[푆(퐺)] incident to the vertices of 푉 푛 푆(퐺) −퐷  only. Also 푡  denotes the number of edges in 푛[푆(퐺)] incident to the vertices 

of 퐷  only. Then [ ( )] ≥ 푡 + 푡 ≥ 4|푉(퐺) −퐷 |− 2 + |퐷 − 1| it implies that [ ( )] ≥ 4푝 − 4|퐷 |− 2 + |퐷 |− 1 = 4푝 −

3|퐷 |− 3. It gives that 3|퐷 | ≥ ( ) . Hence ( ( ) ≤ 훾 (퐺).  
10) Theorem 4.10: For any connected (푝,푞) graph 퐺 with 푝 ≥ 2,  2(푝 − 푞) ≤ 훾 (퐺).  
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Proof: Let 퐷 = { 푣 ,푣 , … ,푣  } be the minimal set of vertices which covers all the vertices in 푉 푛 푆(퐺) . Suppose for every 
vertex of 푣 ∈ 푉 푛 푆(퐺)  is adjacent to at least two vertices of 퐷 , clearly 퐷  forms a double dominating set of  푛 푆(퐺) . Let any 
vertex 푣 ∈ 퐷  which is not adjacent to any vertex of 푉 푛 푆(퐺) −퐷 . Then 2푞 ≥ |퐷 | + 2|푉(퐺) − 퐷 | it gives that 2푞 ≥ |퐷 | +
2푝 − 2|퐷 |. Therefore |퐷 | ≥ 2푝 − 2푞 this implies that 2(푝 − 푞) ≤ 훾 (퐺).  

V. SPECIFIC VALUES OF 휸풅풅풏풔(푮). 
We found some constraints for which 훾 (퐺) follows the equality relation with other domination parameters of 퐺.   

1) Theorem 5.1: For any path 푃  with 푝 ≥ 3, 훾 푃 =
4훼 푃 − 2, 푖푓 푝 푖푠 푒푣푒푛

4훼 푃 , 푖푓 푝 푖푠 표푑푑
.  

Proof: Let 푃  be the path with 푝 ≥ 3 vertices. Consider 푉 = { 푣 ,푣 , … ,푣  } be the vertices and 퐸 = { (푣 ,푣 ) },  i = 1,2,3,… be 
the edge set of path 푃 . Since in 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). We consider the following cases        
a) Case 1: If 푝 is even. Then by Theorem A[1], we have 훼 푃 =   it implies that 푝 = 2훼 푃 . Since 훾 푃 = 2푞 = 2(푝 −

1), we have 훾 푃 = 2푝 − 2 = 2 2훼 푃 − 2 = 4훼 푃 − 2.      
b) Case 2: If 푝 is an odd. Then by Theorem A[1], we have 훼 푃 =  it implies that 푝 − 1 = 2훼 (푃 ). Since 훾 푃 =

2푞 = 2(푝 − 1) = 4훼 (푃 ).  

2) Theorem 5.2: For any path 푃 with 푝 ≥ 3, 훾 푃 =
4훼 푃 − 2, 푖푓 푝 푖푠 푒푣푒푛
4훼 푃 − 4, 푖푓 푝 푖푠 표푑푑

.  

Proof: Let 푃  be the path with 푝 ≥ 3 vertices. Consider 푉 = { 푣 ,푣 , … ,푣  } be the vertices and 퐸 = { (푣 ,푣 ) },  i = 1,2,3,… be 
the edge set of path 푃 . Since in 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). We consider the following cases.                                                                
a) Case 1: If p is even. Then by Theorem B[1], we have 훼 푃 =  it implies that 푝 = 2훼 푃 . Since 훾 푃 = 2푞 = 2(푝 −

1), we have 훾 푃 = 2푝 − 2 = 2 2훼 푃 − 2 = 4훼 푃 − 2.                                                                                                                          
b) Case 2: If 푝 is an odd. Then by Theorem B[3], we have 훼 푃 =  it implies that 푝 − 1 = 2훼 (푃 ). Since 훾 푃 =

2푞 = 2(푝 − 1) = 2푝 − 2 = 4훼 푃 − 4.   
 

VI. UPPER BOUNDS FOR  휸풅풅풏풔(푮). 
We establish upper bounds for 훾 (퐺) in terms of elements of 퐺.                                
1) Theorem 6.1: For any connected (푝, 푞) graph 퐺 with 푝 ≥ 2, 훾 (퐺) ≤ 2푞.  
Proof: Since 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)) , 푉 푆(퐺) = 푝 + 푞 . Let 퐷  be double dominating set of 푛[푆(퐺)] . Then by 
definition of lict subdivision double domination |퐷 | ≥ 2. Further by definition of 푛[푆(퐺)], 2푞 − 훾 (퐺) ≥ 0. Clearly it follows 
that 훾 (퐺) ≤ 2푞. 
2) Theorem 6.2: For any connected (푝, 푞) graph 퐺 with 푝 ≥ 2, 훾 (퐺) ≤ 푝 + 푞 − 훿(퐺).  
Proof: Let 퐷 = { 푣 ,푣 , … ,푣  } ⊆ 푉 푛 푆(퐺)  be the set of vertices and every vertex 푣 ∈ 푉 푛 푆(퐺) −퐷  such that |푁[푣] ∩
퐷 | ≥ 2. Thus it is clear that |퐷 | ≥ 2. Since for any graph 퐺 there exists at least one vertex 푣 ∈ 푉(퐺) such that deg(푣) = 훿(퐺). 
By definition of 푛[푆(퐺)], 푉 푛 푆(퐺) = 퐸(푆(퐺)) ∪ 퐶(푆(퐺)). Then there exists a vertex 푣 ∈ 퐺 such that deg(푣) = 훿(퐺). Thus 
훿(퐺) ≤ 푝 −퐷 + 푞, which implies that 퐷 ≤ 푝 + 푞 − 훿(퐺). Hence the result. 
3) Theorem 6.3: For any connected (푝, 푞) graph 퐺 with 푛[푆(퐺))] ≠ 퐾 , 훾 (퐺) + 훾 (퐺) ≤ 2푞 + 퐶. Where 퐶 is the number 

of cut vertices in 푆(퐺).  
Proof: Suppose 퐺 has 푝 ≤ 3 then 훾 −set does not exist. Now we consider any graph with 푝 ≤ 4, such that 푛[푆(퐺)] ≠ 퐾 . Since 
훾 (퐺) ≤ 2푞  and from Theorem D[3] 훾 (퐺) = 훼 [푛 푆(퐺) ] . Further 훾 (퐺) + 훾 (퐺) ≤ 2푞 + 훼 푛 푆(퐺) ≤
푉 푛 푆(퐺) ≤ 퐸 푆(퐺) ∪ 퐶 푆(퐺) ≤ 2푞 + 퐶. Hence the result. 
4) Theorem 6.4: For any non-trivial tree 푇, the lict subdivision of a tree is non-eulerian.  
Proof: Let 푇 be a non-trivial tree and 푛[푆(퐺)] always contain a point of odd degree. Hence by Theorem C[2], the result follows.  
NORDHAUS-GADDUM TYPE RESULTS                                        
5) Theorem 6.5: For any connected (푝, 푞) graph 퐺 with 푝 ≥ 3 vertices, 
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(i)훾 (퐺) + 훾 (퐺̅) ≤ 4푞.                                                                                                   (ii)훾 (퐺).훾 (퐺̅) ≤ 4푞 . 
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