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Abstract-Analytic solution of unsteady oscillatory hydro-magnetic flow of a dusty, electrically conducting fluid in a horizontal 
channel has been obtained under the influence of periodic pressure gradient. The system is rotating with a constant angular 
velocity Ω about an axis normal to the plates and |Ω| is so small that centripetal acceleration|Ωⅹ(Ωⅹr)| can be neglected. 
Characteristics of volume fraction (volume occupied by the dust particles per unit volume of the mixture) is exhibited through 
the parameter 흓. The dusty fluid flow model is governed by Saffman model.  Channel is bounded by two porous electrically non-
conducting plates and fluid is injected with constant velocity through the lower stationary plate and the upper plate is subjected 
to the same constant suction velocity. Also, the upper plate is oscillating in its own plane with a velocity U(t). A magnetic field of 
strength Bo is applied in the transverse direction to the plate. Governing equations of motion of fluid particles and dust particles 
are solved analytically. The effect of the various parameters on the governing motion of fluid, dust particles and skin-friction at 
both the plates have been discussed graphically. 
Keywords: Dusty fluid, Volume fraction, Coriolis force, skin-friction. 

I. INTRODUCTION 

Saffman [1] has studied the stability of laminar flow of a dusty gas by neglecting the volume fraction of dust particles. Michael and 
Miller [2] have investigated the behaviour of plane parallel flow of a dusty gas. The errors in the governing gas particle mixtures by 
neglecting volume fraction have been shown by Rudinger [3]. Nayfeh [4] has formulated the equations of motion of the fluid 
particles in presence of volume fraction of dust particles. Gupta and Gupta [5] have analysed the flow of a dusty gas through a 
channel with time varying pressure gradient. Singh [6] has analysed the unsteady flow of a dusty fluid through a rectangular 
channel with time dependent pressure gradient. The unsteady two dimensional flow of an electrically conducting dusty viscous 
fluid through a channel in presence of transverse magnetic field has been investigated by Singh and Ram [7]. Prasad and 
Ramacharyulu [8] have discussed the unsteady flow of a dusty incompressible fluid between two parallel plates under an impulsive 
pressure gradient. Gupta and Gupta [9] have investigated the unsteady flow of a dusty visco-elastic fluid through channel with 
volume fraction. Ajadi [10] has analysed the isothermal flow of a dusty viscous electrically conducting fluid between oscillatory 
and non-oscillatory boundary motions. The unsteady Couette flow flow with heat transfer of a viscous incompressible electrically 
conducting fluid under the influence of an exponentially decreasing pressure gradient has been discussed by Attia et al. [11].   
Unsteady Couette flow of a dusty gas between two infinite parallel plates, when one plate of channel is kept stationary and other 
plate moves uniformly in its own plane has been studied by Nag et al. [12].  Dalal [13] has discussed the nature of generalized 
Couette flow of dusty gas due to an impulsive pressure gradient as well as due to impulsive start of lower plate. Singh and Singh 
[14] have investigated the problem of free convective MHD flow of dusty viscous fluid in presence of volume fraction through 
vertical parallel plates, when one plate is fixed and the other is oscillating with time.  Attia [15] and [16] has analysed MHD flow of 
dusty fluid with heat transfer under various physical considerations.  The problem of has been studied by Ahmed et al. [17]. An 
unsteady flow of a dusty, viscous, electrically conducting fluid in a horizontal channel rotating with an angular velocity by 
neglecting the volume fraction has been studied by Singh et al. [18]. The aim of the paper is to study the effects of volume fraction 
of dust particles on the flow of an unsteady oscillatory electrically conducting viscous fluid through horizontal channel rotating 
with constant magnetic field in presence of transverse magnetic field. It is worth mentioning that the results obtained from 휙 = 0 
coincide with the results from Singh et al. [18].  

II. FORMULATION OF THE PROBLEM 
Let us consider an unsteady dusty viscous fluid is flowing between two horizontal parallel plates at z = 	± . The lower plate is 
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subjected with a constant injected velocity and the fluid is sucked with same velocity through the upper porous plate. In the present 
study, the following assumptions are made: 
The dust particles are spherical in shape and uniformly distributed. 
The temperature is uniform within the particle. 
Plates are assumed to be electrically non-conducting. Upper plate is oscillating with a velocity U’ (t). 

 
 z' 
 wo Ω⃗(0, 0,Ω ) B⃗(0, 0, B ) 
  

 d x' 
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       y' 

 wo  

 
 

 
Figure 1: The physical configuration of the problem 

A periodic pressure gradient varying with time is experienced in 푥’- direction. 
A uniform magnetic field of uniform strength is applied in the direction 푧’- axis. Induced magnetic field is neglected by assuming 
very small values of magnetic Reynolds number (Cramer and Pai [19]).  
The system is rotating with a constant angular velocity Ω about an axis normal to the plates and |Ω| is so small that the centripetal 
acceleration |Ωⅹ(Ωⅹr)| can be neglected  
The plates are of infinite in length in 푥′ and 푦’ directions, so all physical quantities except 푝’ depend on 푧’ and 푡’ (time) respectively. 

III. GOVERNING EQUATIONS 

The governing equations of motion of both fluid and dust particles based on conservation of mass and momentum are given as 
follows: 

∂w
∂z = 0	 => 푤 = w 																																																																	(3.1) 

∇. u = 0																																																																							(3.2) 

(1−Φ)
∂u′
∂t′ + w

∂u′
∂z′ − 2Ω v′ = (1−Φ) −

1
ρ
∂p′
∂x′ + ν

∂ u′
∂z −

σB u′
ρ +

KN
ρ u − u 				(3.3) 

(1 −Φ)
∂v′
∂t′ + w

∂v′
∂z′ + 2Ω u′ = (1 −Φ) −

1
ρ
∂p′
∂y′ + ν

∂ v′
∂z −

σB v′
ρ +

KN
ρ v − v 				(3.4) 

0 = −
1
ρ
∂p′
∂z′ 																																																																						(3.5) 

m
∂u
∂t′ − 2Ω v = Φ −

1
ρ
∂p′
∂x′ + ν

∂ u′
∂z − K u − u 																(3.6) 

m
∂v
∂t′ + 2Ω u = Φ −

1
ρ
∂p′
∂y′ + ν

∂ v′
∂z − K v − v 																(3.7) 

Here x’, 푦’ and 푧’ are the displacement variables and t be the time. u⃗(u′, v′,w′)	and	u ⃗ u , v , w  represent the fluid and particle 

velocities respectively, magnetic field and angular velocity for the present study are defined as B⃗(0, 0, B )and Ω⃗(0, 0,Ω ) 
respectively. Let	푝’ be the pressure, ρ be the density of the clear fluid, ν be the viscosity of clear fluid, N the number of dust particle 
per unit volume, K= 6πµa (a= radius of dust particle) be the Stokes constant, σ be the electrical conductivity of the fluid, mp be the 
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average mass of dust particles. 
The relevant boundary conditions of the problem are: 

z = −
d
2 ; 	u = v = u = v = 0

z =
d
2 ; 	u = u = U e 	, v′ = v = 0

																																								(3.8) 

where, U0 be the amplitude of oscillation and at t′ = 0, it coincides the velocity of fluid and dust particles, ω′ be the frequency of 
oscillations and d be the distance between two two plates. 

IV. METHOD OF SOLUTION 

Introducing the following non-dimensional quantities, 

x =
x
d , y =

y
d , z =

z
d , u =

u
w , v =

v
w , u =

u
w , v =

v
w , p =

p
ρω , t =

t
d , G =

m ν
KNd ,	 

ω =
ω′d
ω ,Ω =

Ω d
ν , R =

KNd
μ , M =

σB d
μ , λ =

w d
ν 																																					(4.1) 

in the equations (3.3) – (3.7), the non-dimensional form of equations of motion become: 

(1 −ϕ)
∂u
∂t +

∂u
∂z −

2Ωv
λ = (1−Φ) −

∂p
∂x +

1
λ
∂ u
∂z −

M
λ u +

R
λ u − u 																		(4.2) 

(1− ϕ)
∂v
∂t +

∂v
∂z +

2Ωu
λ = (1−Φ) −

∂p
∂x +

1
λ
∂ v
∂z −

M
λ v +

R
λ v − v 																		(4.3) 

0 = −
∂p
∂z 																																																																																				(4.4) 

∂u
∂t −

2Ωv
λ =

Φ
m −

∂p
∂x +

1
λ
∂ u
∂z −

1
G u − u 																													(4.5) 

∂v
∂t +

2Ωu
λ =

Φ
m −

∂p
∂x +

1
λ
∂ v
∂z −

1
G v − v 																														(4.6) 

where, = 	  is the dimensionless relaxation time of particles. 

The non-dimensional forms of boundary conditions are as follows: 

z = −
1
2 ; 	u = u = v = v = 0

z = +
1
2 ; 	u = u = Ue , v = v = 0

																											(4.7) 

where,U =  

Equation (4.4) suggests that fluid pressure is constant along z-axis. We assume that the fluid flows only under the pressure gradient 
along x-axis. 

−
∂p
∂x = Acosωt 

In order to combine the velocity components for fluid particles and dust particles, let u consider 
F = u + iv, F = u + iv 																																																									(4.8) 

Using equations (4.8), equations (4.2) and (4.3) can be combined as 

(1 − ϕ)
∂F
∂t +

∂F
∂z + i

2ΩF
λ = (1 −Φ) −

∂p
∂x +

1
λ
∂ F
∂z −

M
λ F +

R
λ F − F 																		(4.9) 

Similarly, (4.5) and (4.6) can be combined as 
∂F
∂t + i

2ΩF
λ =

Φ
m −

∂p
∂x +

1
λ
∂ F
∂z −

1
G F − F 																														(4.10) 

Boundary conditions reduce to 
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z = −
1
2 ; 	F = F = 0

z = +
1
2 ; 	F = F = Ue

																																																							(4.11) 

To solve the equations, we assume the solutions of the problem in the complex form as follows: 

퐹(푧, 푡) = 휙(푧)푒 ,−
휕푝
휕푥 = 퐴푒 ,퐹 (푧, 푡) = 휓(푧)푒 																									(4.12)	 

Substituting (4.12) in the equations (4.9) and (4.10), we obtain the following equations for the fluid and dust particle velocities 
휙 − 휆휙 −휙퐿 = −퐴휆 − 푅(1− 휙)휓																																															(4.13) 

휓′ =
1

퐿 + 푖퐿
훷
푚 퐴 +

휙
휆 +

휙
퐺 																																																								(4.14) 

These equations are solved under the following boundary conditions 

푧 = −
1
2 ; 	휙 = 휓 = 0

푧 = +
1
2 ;휙 = 휓 = 푈푒

																																																																		(4.15) 

V. RESULTS AND DISCUSSION 

Solving the equations (4.13) and (4.14) subject to the boundary conditions, we get the solutions as follows: 
휙 = 푒 (퐶 푐표푠훽 푧 + 푖퐶 푠푖푛훽 푧) + 푒 (퐶 푐표푠훽 푧 + 푖퐶 푠푖푛훽 푧) + 퐿 + 푖퐿  

휓 =
퐿 − 푖퐿
퐿 + 퐿

[퐿 + 푖퐿 + 푒 	푐표푠훽 푧(퐿 + 푖퐿 ) + 푒 	푐표푠훽 푧(퐿 + 푖퐿 ) + 푒 	푠푖푛훽 푧(푖퐿 − 퐿 )

+ 푒 	푠푖푛훽 푧(푖퐿 − 퐿 )	] 
Then the velocity components can be derived as 

푢 = {푒 (퐶 푐표푠훽 푧 − 퐶 푠푖푛훽 푧) + 푒 (퐶 푐표푠훽 푧 − 퐶 푠푖푛훽 푧)}푐표푠휔푡
− {푒 (퐶 푐표푠훽 푧 + 퐶 푠푖푛훽 푧) + 푒 (퐶 푐표푠훽 푧 + 퐶 푠푖푛훽 푧)}푠푖푛휔푡 

푣 = {푒 (퐶 푐표푠훽 푧 − 퐶 푠푖푛훽 푧) + 푒 (퐶 푐표푠훽 푧 − 퐶 푠푖푛훽 푧)}푠푖푛휔푡
+ {푒 (퐶 푐표푠훽 푧 + 퐶 푠푖푛훽 푧) + 푒 (퐶 푐표푠훽 푧 + 퐶 푠푖푛훽 푧)}푐표푠ωt 

u =
1

L + L
[{L A (z) + L B (z)}cosωt− {−L A (z) + L B (z)}sinωt] 

v =
1

L + L
[{L A (z) + L B (z)}sinωt + {−L A (z) + L B (z)}cosωt] 

The non-dimensional shearing stresses at the plates are given by 

σ (= Sh) + iσ (= Sh ) =
σ + iσ

ρν
d

=
1
λ ϕ (z)e  

The objective of the present paper is to investigate the effects of volume fraction in the governing motion of an oscillatory 
electrically conducting dusty fluid in a horizontal channel rotating with a constant angular velocity. The effect of volume fraction is 
exhibited through the parameter Φ. The velocity profiles of both fluid particles and dust particles and shearing stresses at both the 
plates are analyzed graphically for various values of flow parameters involved in the problem.  
Figures 2 to 11, represent the velocity profiles of both fluid particles and dust particles against the displacement variable z in 
combination of Magnetic parameter (M), Suction parameter (λ), particle concentration parameter (R), the frequency of oscillation 
(ω), the amplitude of pressure gradient (A), particle mass parameter (G) and rotation parameter (Ω). Figure 2 notifies the effect of 
phase angle (wt) on the fluid flow against the displacement variable and it is seen that, the impact of phase angle is prominent in the 
neighborhood of the upper plate, where fluid flow is oscillating. Also, it can be concluded that the phase angle has a retarding effect 
on the speed of the fluid flow. During wt=pi, the fluid particles experience a back flow. During the cross flow of fluid particles, an 
oscillating trend is experienced and it is represented in figure 3. The difference in flow pattern due to the presence and absence of 
volume fraction ϕ is shown in figure 4. It is seen that, the presence of volume fraction subdues the speed of fluid particles and same 
retarding trend is also experienced in case of cross flow along with the increasing values of displacement variable ‘z’. Application 
of transverse magnetic field generates the Lorentz force. As a consequence, a decelerating trend is seen in the motion of fluid 
(Figure 5). Effects of rotation parameter (Ω) on velocity profiles u and v, are seen in figures 6 and 7. In the both the figures, it is 
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noticed that the magnitudes of u and v slow down during the enhancement of rotation parameter. Figures 8-11, signify the behavior 
of motion of dust particles against the displacement variable z and increasing values of phase angle 0 ≤ ωt ≤	 ,  the speed 
increases and in case of ωt = π, a back flow is noticed (figure 8). An opposite phenomenon is noticed during cross flow of dust 
particles against the displacement variable ‘z’ (figure 9). Figure 10 and 11 explain the effects of rotation parameter on the motion 
dust particle and it can be concluded that the growth of rotation parameter decreases the magnitude of velocity components u and v.  
After finding the velocity profile, the shearing stress at both the plates are calculated for different values of flow parameters 
involved in the solution and represented graphically against the suction parameter, λ (figures 12 to 16). It is revealed that as suction 
parameter increases, the shearing at both lower and upper plates decreases. Increasing values of rotation parameter diminishes the 
shearing stress at the lower plate (figure 12) but an opposite trend is noticed at the upper plate (figure 13). Figure 14 and 15 
characterize that during the growth of volume fraction, the shearing stresses at both the plates decrease along with the increasing 
values of suction parameter. Figure 16, shows the difference in shearing stress generated by regular and cross flow at both the plates 
and it is concluded that at the upper plate, the shearing generated by cross flow has lesser order of magnitude than the shearing 
stress generated by regular flow but an opposite phenomenon is noticed at the lower plate. 

 

Figure 2: Velocity profile u against z for M = 2, R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, Ω =2, A = 0.01. 

 
Figure 3: Transient Velocity profile v against z for M = 2, R=2, λ = 3, ϕ = 0.01, ω = 2, G =3, Ω =2, A = 0.01. 

 
Figure 4:  Velocity u and transient velocity v against z for M = 2, R=2, λ = 3, ω = 2, G = 3, Ω =2, A = 0.01, ωt = π. 
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Figure 5:  
Absolute velocity profile, |u| against z for R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, Ω =2, A = 0.01, ωt = π. 

 
Figure 6:  Absolute velocity profile, |u| against z for R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 

 

 

Figure 7:  Transient velocity profile, |v| against z for R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 
 

 

Figure 8: Dust particle velocity profile up against z for M = 2, R=2,	λ = 3, ϕ = 0.01, ω = 2, G = 3, Ω =2, A = 0.01. 
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Figure 9:  Transient dust particle velocity profile vp against z for M = 2, R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, Ω =2, A = 0.01. 

 

Figure 10:  Absolute velocity profile of dust particle, |up| against z for R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 
 

 
 
Figure 11:  Transient velocity profile of dust particle, |vp| against z for R=2, λ = 3, ϕ = 0.01, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 

 

Figure 12:  Shearing stress at the lower plate, Sh against λ for R=2, ϕ = 0.01, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 
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Figure 13:  Shearing stress at the upper plate, Sh against λ for R=2, ϕ = 0.01, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 

 

Figure 14:  Shearing stress at the lower plate, Sh against λ for R=2, Ω=2, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 

 

Figure 15:  Shearing stress at the upper plate, Sh against λ for R=2, Ω=2, ω = 2, G = 3, M=2, A = 0.01, ωt = π. 
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Figure 16:  Component of shearing stress along and in the transverse direction, against λ for R=2, Ω=2, ω = 2, G = 3, M=2, A = 
0.01, ϕ = 0.01. 
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