

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: VIII Month of publication: August 2018 DOI:

www.ijraset.com

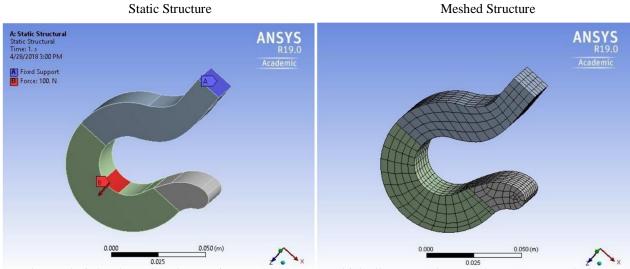
Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Study of Various Strains Calculated on a Crane Hook using FEA and Mathematical Data Analysis

Deeksha Sunaiya¹, Sandeep Jain², Dr Ashish Manoria³

¹Research Scholar, ²Associate Professor Samrat Ashok Technological Institute, ³Professor Samrat Ashok Technological Institute

Abstract: On applying a certain load on an object it is a physical phenomenon that the object get deformed. The variation of deformation however may differ due to various influencing factors like- Quantity of load, Geometry of object, time of application of load, etc. A numerical study of various strains and strain related effects has been carried out on a Crane Hook design for further modification in the design of Crane Hook.


Keywords: Crane Hook, Strain, Strain Intensity, Strain Energy, Equivalent Total Strain, ANSYS R19.0.

I. INTRODUCTION

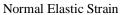
Crane Hook is a load carrying element that follows various stresses and strains with some amount of deformation and distortion. To study the most affected part while loading that comes into huge deformation a test has been carried out. The various strains and deformations are meant to find out the major affected portion.

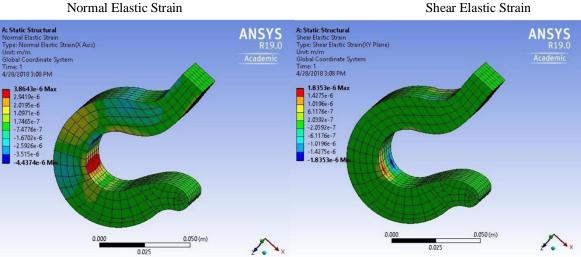
II. GEOMETRY AND LOADING

Here "A" is the fixed support and "B" is the part which comes into contact for loading. The force has been applied in Z-direction as similar to practical situation.

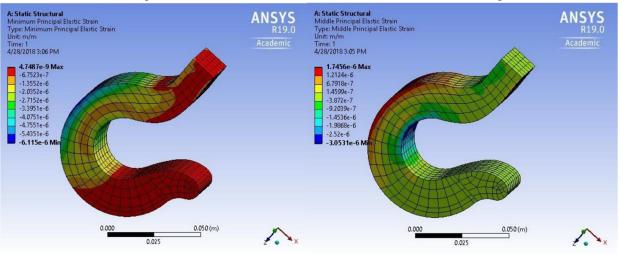
Further analysis has been done by creating a meshed system which allows us to brought the accurate conclusions.

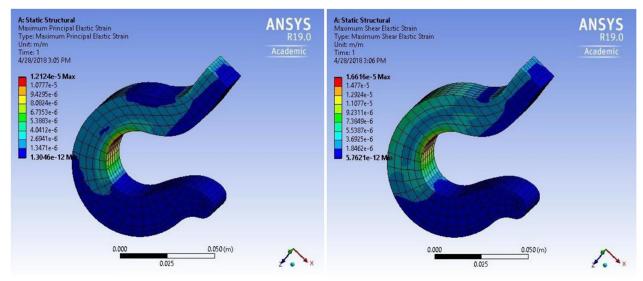
A. Strain Analysis


Strain is a mode of calculation of deformation which shows the displacement between two points in the element with reference to a given length.


An isotropic material that falls under Hooke's Law produces Normal Strain while in a Shear Strain is an isochoric plane deformation with a combination of line elements relatively to a given reference that stays fixed during the deformation.

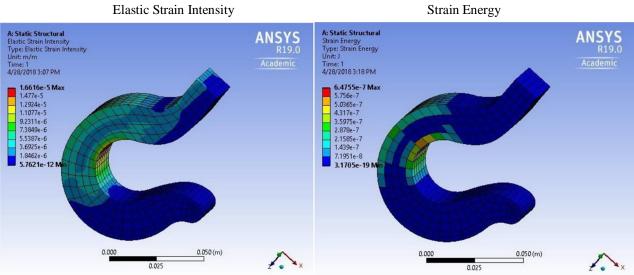
International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887


Volume 6 Issue VIII, August 2018- Available at www.ijraset.com

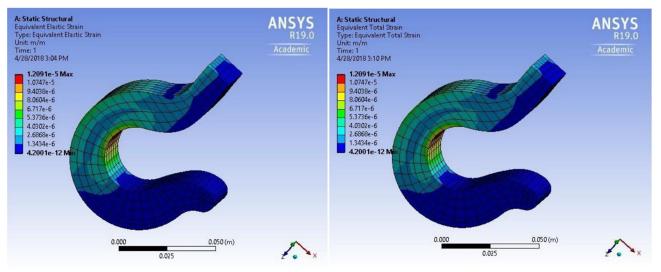

Minimum Principal Elastic Strain

Middle Principal Elastic Strain

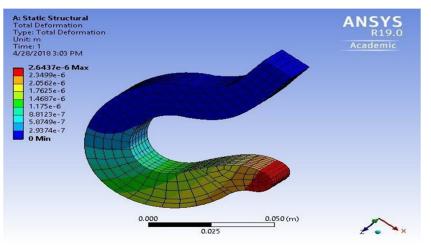
Maximum Principal Elastic Strain


Maximum Shear Elastic Strain

International Journal for Research in Applied Science & Engineering Technology (IJRASET)



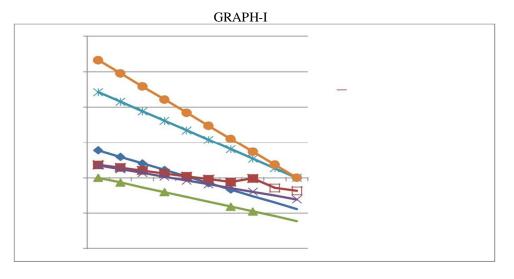
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue VIII, August 2018- Available at www.ijraset.com



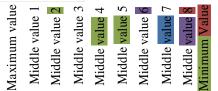
Equivalent Elastic Strain

Equivalent Total Strain

Total Deformation



III. RESULTS & CONCLUSIONS


			TABL	E-1		
S.NO	NORMAL	SHEAR	MINIMUM	MIDDLE	MAXIMUM	MAXIMUM
	ELASTIC	ELASTIC	PRINCIPAL	PRINCIPAL	PRINCIPAL	SHEAR
	STRAIN	STRAIN	ELASTIC	ELASTIC	ELASTIC	ELASTIC
			STRAIN	STRAIN	STRAIN	STRAIN
1.	3.8643e-6	1.8353e-6	4.7487e-9	1.7456e-6	1.2124e-5	1.6616e-5
2.	2.9419e-6	1.4275e-6	-6.7523e-7	1.2124e-6	1.0777e-5	1.477e-5
3.	2.0195e-6	1.0196e-6	-1.3552e-6	6.7918e-7	9.4295e-6	1.2924e-5
4.	1.0971e-6	6.117e-7	-2.0352e-6	1.4599e-7	8.0824e-6	1.1077e-5
5.	1.7465e-7	2.0392e-7	-2.7152e-6	-3.872e-7	6.7353e-6	9.2311e-6
6.	-7.477e-7	-2.0392e-7	-3.3951e-6	-9.2039e-7	5.3883e-6	7.3849e-6
7.	-1.6702e-6	-6.1176e-7	-4.0751e-6	-1.4536e-6	4.0412e-6	5.5387e-6
8.	-2.5926e-6	-1.016e-7	-4.7551e-6	-1.9868e-6	2.6941e-6	3.6925e-6
9.	-3.515e-6	-1.4275e-6	-5.4351e-6	-2.52e-6	1.3471e-6	1.8462e-6
10.	-4.4374e-6	-1.8353e-6	-6.115e-6	-3.0531e-6	1.3046e-12	5.7621e-12

A graphical representation of the comparative data of strains has been shown below:

2.00E-05 1.50E-05 1.00E-05 5.00E-06 0.00E+00 -5.00E-06 -1.00E-05

NORMAL ELASTIC STRAIN

- MINIMUM PRINCIPAL ELASTIC STRAIN
- MIDDLE PRINCIPAL ELASTIC STRAIN
- MAXIMUM PRINCIPAL ELASTIC STRAIN
- MAXIMUM SHEAR ELASTIC STRAIN

A. Elastic Strain Intensity MAXIMUM VALUE= 1.6616e-5 MINIMUM VALUE= 5.7621e-12

B. Strain Energy MAXIMUM VALUE=6.4755e-7 MINIMUM VALUE=3.1705e-19

C. Equivalent Elastic Strain MAXIMUM VALUE= 1.2091e-5 MINIMUM VALUE=4.2001e-12

D. Equivalent Total Strain MAXIMUM VALUE=1.2091e-5 MINIMUM VALUE=4.2001e-12

E. Total Deformation MAXIMUM=2.6437e-6 MINIMUM=0

V. ACKNOWLEDGEMENT

I am thankful to Mr. Sandeep Jain(Guide) and Mr. Ashish Manoria for their support and guidance in completion of this project. I am also thankful to all the authors who worked on Crane Hook System.

REFERENCES

- [1] P. Seshu; Textbook of Finite Element Analysis.
- [2] O.C. Zienkiewicz, R.L. Taylor & J.Z. Zhu; A Textbook on The Finite Element Method: Its Basis & Fundamentals.
- [3] ASME Standard B30.10, "Hooks Safety Standard for bleways, Cranes, Derricks, Hoists, Hooks, Jacks and Slings," 2009.
- [4] Stress analysis of crane hook and validation by photo-elasticity", by Mr.Rashmi Uddanwadiker.
- [5] Deborah L Boklund Moran, "Hook Assembly and Kit," United States Patent, Patent No.: US 20060289714 A1.
- [6] Snow, S.D.; Morton, D.K.; Pleins, E.L.; Keating, R. 2010. Strain-based acceptance criteria for energy-limited events. ASME Pressure Vessels and Piping Conference, Operations, Applications and Components, Vol. 7: 91-96.

IV. CALCULATIONS

45.98

7.129

SRA

IMPACT FACTOR: 7.429

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)