
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad Technology (IJRASET)

Three Phase Three Level ZVS DC-DC Converter with Asymmetrical Duty Cycle Control

M.V.Vijayalakshmi ${ }^{1}$, J. Sivavara Prasad ${ }^{2}$
${ }^{1}$ M.Tech, ${ }^{2}$ M.TECH (Ph.D), Associate Professor, Lakireddy Balireddy College of Engineering, Vijayawada, India

Abstract

This paper proposes development of soft switching scheme for three phase three level DC-DC converter for different duty cycles to achieve ZVS for all switches. The ZVS is achieved with output inductor and leakage inductor of transformer. This paper describes the main operational modes of proposed converter for different duty cycle and simulation results are observed and compare the switching losses of proposed converter with and without ZVS. KEYWORDS—Zero Voltage Switching (ZVS), Three Phase Three Level (TPTL),DC-DC converter ,Pulse width modulation ,Duty cycle, Soft switching.

I. INTRODUCTION

In high voltage high power applications the ordinary converters exists many problems like stress on switches, switching losses, EMI etc.... These problems can be eliminated by using ZVS and ZCS converters. In ZVS, the switches are turned on and off at zero voltages and in ZCS, the switches are turned on and off at zero currents. As a result power reduces almost to a least value, by which the stress on the switches can be reduced .Full-bridge dc/dc converters have been widely used in medium to high power applications to further reduce the stress on switches for high power application TPTL was proposed. With three phase architecture the converter has the superior features including lower current rating of switches reducing input output current ripple allowing small size filter requirement. Although predominant characteristics exist in TPTL soft switching has not been achieved which limits the switching frequency and power loss.
The use of Asymmetrical duty cycle in the three phase three level dc/dc converter was proposed in order to achieve ZVS commutation over a wide load range.

II. PROPOSED TPTL DC/DC CONVERTER FOR DIFFERENT DUTY CYCLES

Fig. 1 shows the circuit configuration of TPTL converter in which, a three-phase transformer with Δ - Y connection is employed for the smaller turns ratios and transformer VA rating. As shown, $L_{\mathrm{r}}, L_{\mathrm{rb}}$ and L_{rc} are the additional resonant inductances to widen the ZVS commutation load range. $L_{\mathrm{kk}}, L_{\mathrm{kk}}$, and L_{kc} are the equivalent primary leakage inductances of each phase. $D_{f 1}$ and $D_{f 2}$ are freewheeling diodes. C_{ss} is the flying capacitor, which is in favor of decoupling the switching transition of Q_{1}, Q_{3}, Q_{4}, and $Q_{6} . D_{R 1}-$ $D_{R 6}$ are rectifier diodes. The output filter is composed of L_{f} and C_{f}, and R_{Ld} is the load. Fig. 2 shows the control strategy of proposed converter. To realize the soft-switching for switches, the original interleaved switches should be designed in a complementary manner, and a short delay time $t d$ is necessary to be introduced between the two complementary switches to provide an interval for the ZVS commutation, which is similar to the control strategy of asymmetrical half-bridge converter .Accordingly, the duty cycles of Q_{1}, Q_{3}, and Q_{5} are served to regulate the output voltage, while the drive signals of Q_{4}, Q_{6}, and Q_{2} are complementary to that of the Q_{1}, Q_{3}, and Q_{5}, respectively. Technology (IJRASET)

Fig. 1. Topology configuration of TPTL dc/dc converter.

Fig. 2. Asymmetrical duty cycle control.

III. OPERATION OF PROPOSED TPTL CONVERTER

This section will analyze the operation principles of the TPTL converter under the modified control scheme. The following assumptions are made for the simplicity before the analysis:

1) all power devices and diodes are ideal;
2) all capacitors and inductances are ideal;
3) the output filter inductance is large enough to be treated as a constant current source during a switching period; its value equals to output current
4) the inductances of each phase are identical, i.e., $L_{\mathrm{lka}}=L_{\mathrm{lkb}}=L_{\mathrm{lkc}}=L_{\mathrm{lk}}, L_{\mathrm{ra}}=L_{\mathrm{rb}}=L_{\mathrm{rc}}=L_{\mathrm{r}}$;
5) $C_{1}=C_{2}=C_{3}=C_{4}=C_{5}=C_{6}=C_{\mathrm{p}}$.

Fig. 3 shows the key waveforms of the TPTL converter with asymmetrical duty cycle control, as seen, the operation of the TPTL converter can be classified by different modes, according to the duty cycle range and the load current. The corresponding operation modes are defined as the small duty cycle mode (SDCM), and the large duty cycle mode (LDCM), respectively,

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 3. Key waveforms of the TPTL converter with asymmetrical duty cycle control with SDCM.
The basic equations of the voltages and currents of the transformer are listed as follows:

$$
\begin{gather*}
\mathrm{V}_{\mathrm{AB}}+\mathrm{V}_{\mathrm{BC}}+\mathrm{V}_{\mathrm{CA}}=0 \tag{1}\\
\mathrm{i}_{\mathrm{sa}}+\mathrm{i}_{\mathrm{sb}}+\mathrm{i}_{\mathrm{sc}}=0 \tag{2}\\
\frac{\mathrm{dia}}{\mathrm{dt}}=\mathrm{k} \frac{(\mathrm{disa})}{\mathrm{dt}}=\frac{\mathrm{vLlka}}{\mathrm{Llk}}, \frac{\mathrm{dipb}}{\mathrm{dt}}=\mathrm{k} \frac{(d i s b)}{(d t)} \\
=\frac{\mathrm{vLlkb}}{\mathrm{Llk}}, \frac{(\mathrm{dipc})}{\mathrm{dt}}=\mathrm{k} \frac{(\mathrm{disc})}{\mathrm{dt}}=\frac{V L l k c}{L l k} \tag{3}
\end{gather*}
$$

Where k represents the secondary-to-primary turns ratios of the transformer. The voltage across the leakage inductance of transformer can be derived from (2) and (3) and is given as follows

$$
\begin{equation*}
\mathrm{V}_{\mathrm{Llka}}+\mathrm{V}_{\mathrm{Llkb}}+\mathrm{V}_{\mathrm{Llkc}}=0 \tag{4}
\end{equation*}
$$

Stage1[0 - \mathbf{t}_{0}]:

Fig.4(a) Shows Q_{1}, Q_{2}, Q_{6}, and $D_{f 2}$ are conducting at the primary side, and $D_{R 1}$ and $D R 6$ are conducting at the secondary side. $V_{\mathrm{AB}}=V_{\text {in }}$ $12, V_{\mathrm{BC}}=0$, and
$\mathrm{V}_{\mathrm{CA}}=-V_{\mathrm{in}} / 2$. From (1), (2), (4), and other constraints between voltages and currents of transformers, the following expressions can be obtained.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$$
\begin{align*}
& V p a=\frac{V i n}{2}, V p b=0, V p c=-\frac{V i n}{2} \tag{5}\\
& V r e c t=V s a-V s c . k . V \text { in } \tag{6}
\end{align*}
$$

Where V_{pi} and V_{si} are the primary voltage and secondary voltage of transformers, I represents the subscripts a, b, and c.
Stage 2[t $\left.\mathbf{t}_{0}-\mathbf{t}_{1}\right]$:
Fig. 4 (b) Shows At t_{0}, Q_{1} is turned off, the line current i_{A} charges C_{1} and discharges C_{4} linearly, and the rectified voltage decreases. As C_{1} limits the rising rate of the voltage across Q_{1}, Q_{1} is zero-voltage turn-off. The voltages across C_{1} and C_{4} are

$$
\begin{gather*}
V c 1(t)=\frac{1}{c p} k I o(t-t o) \tag{7}\\
V c 4(t)=\frac{V i n}{2}-\left(\frac{1}{c p} k \cdot I o(t-t o)\right) \tag{8}
\end{gather*}
$$

At $t_{1}, \mathrm{v}_{\mathrm{C} 1}$ rises to $\mathrm{V}_{\mathrm{IN} / 2}$, and $\mathrm{V}_{\mathrm{C} 4}$ decays to zero; therefore, D 4 conducts naturally, and Vrect decreases to zero.
Stage $3\left[\mathbf{t}_{1}-\mathbf{t}_{\mathbf{2}}\right]$:
Fig.4(c) Shows after C_{1} is fully charged, the current flowing through C_{1} transfers to C_{ss} and begins to charge Css. The voltage across C_{ss} will increase and block $D_{f 2}$ to be off. During this stage, $V_{\mathrm{AB}}=V_{\mathrm{BC}}=V_{\mathrm{CA}}=0 . D_{4}$ conduct sand clamps the voltage across Q_{4} at zero, so Q_{4} can be turned on at zero-voltage condition. $D_{R 1}$ and $D_{R 6}$ conduct, and $V_{\text {rect }}$ is still zero.

Stage 4[th $\left.\mathbf{t}_{\mathbf{3}}\right]$:

Fig. 4 (d) Shows At t_{2}, Q_{6} is zero-voltage turned-off and V_{AB} increases reversely. If v_{pa} keeps constant, the polarity of the voltage applied on L_{ka} will be non associated with the current flowing through L_{lka}; as a result, i_{pa} will decrease and cannot provide the load current, then $D_{R 3}$ begins to conduct, and the current commutation between $D_{R 1}$ and $D_{R 3}$ occurs. In the primary stage, C_{3} and C_{6} resonate with the leakage inductances and the resonant inductances, and the following expressions will be obtained.

$$
\begin{equation*}
\mathrm{V} c 3(t)=\frac{\operatorname{Vin}}{2}-\left(\frac{1}{2} k \cdot I o \cdot Z r \cdot \sin [\omega r(t-t 2)]\right) \tag{9}
\end{equation*}
$$

$V c 6(t)=\left(\frac{1}{2} \cdot \mathrm{k} \cdot I o \cdot Z \mathrm{Zr} \cdot \sin \left[\omega r\left(\mathrm{t}-\mathrm{t}_{2}\right)\right]\right.$
$\mathrm{i}_{\mathrm{A}(\mathrm{t})}=\frac{3}{2} k \cdot I o+\frac{1}{2} k \cdot I o \cos [\omega r(t-\mathrm{t} 2)]$
$\mathrm{i}_{\mathrm{B}(\mathrm{t})}=-k \cdot I o \cos [\omega r(t-t 2)]$
$\mathrm{i}_{\mathrm{C}(\mathrm{t})}=-\frac{3}{2} k \cdot I o+\frac{1}{2} k \cdot I o \cdot \cos [\omega r(t-\mathrm{t} 2)]$
During this stage, $V_{\text {rect }}$ remains at zero. When $V_{c 3}$ decays to zero, D_{3} conducts naturally.

Stage5[$\left.\mathbf{t}_{3}-\mathbf{t}_{4}\right]$:

Fig. 4 (e) Shows As D_{3} is conducting, the voltage across Q_{3} is clamped at zero; therefore, Q_{3} is turned on at zero-voltage condition. During this stage, Q_{2}, Q_{3}, and Q_{4} conduct in the primary stage, $V_{\mathrm{AB}}=-V_{\text {in } / 2}, V_{\mathrm{BC}}=V_{\mathrm{in} / 2}$, and $V_{\mathrm{CA}}=0 . D_{R 1}, D_{R 3}$, and $D R 6$ conduct in the secondary stage, and $V_{\text {rect }}=0$. From (1), (2), (4), and other constraints between voltages and currents of transformers, the expressions of the phase currents are given in (14)-(16)
$\mathrm{i}_{\mathrm{pa}(\mathrm{t})}=\mathrm{i}_{\mathrm{pa}(\mathrm{t} 3)}-\frac{V i n}{2 L p} .(\mathrm{t}-\mathrm{t} 3)$
(15)

Therefore, the line currents can be obtained from (14) to (16)
$\mathrm{i}_{\mathrm{pb}(\mathrm{t})}=\mathrm{i}_{\mathrm{pb}(3)}+\frac{\mathrm{Vin}}{2 \mathrm{Lp}} .(\mathrm{t}-\mathrm{t} 3)$

$$
\mathrm{i}_{\mathrm{pc}(\mathrm{t})}=-\mathrm{kIo}
$$

Therere, the line currents can be obtained from (14) to (16)

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 $\mathrm{i}_{\mathrm{A}(\mathrm{t})}=\mathrm{i}_{\mathrm{A}(\mathrm{t})}-\frac{V i n}{2 L p} .(\mathrm{t}-\mathrm{t} 3)$
 (17)
 $\frac{\mathrm{Vin}}{\mathrm{Lp}} \cdot(\mathrm{t}-\mathrm{t} 3)$
 $$
\begin{array}{r} \mathrm{i}_{\mathrm{B}(\mathrm{t})}=\mathrm{i}_{\mathrm{B}(\mathrm{t} 3)}+ \\ \mathrm{i}_{\mathrm{c}(\mathrm{t})}=\mathrm{i}_{\mathrm{C}(\mathrm{t} 3)}-\frac{\mathrm{Vin}}{2 \mathrm{Lp}} \cdot(\mathrm{t}-\mathrm{t} 3) \tag{18} \end{array}
$$

At the secondary stage, I_{sa} flows through $D_{R 1}$ and decreases with ipa from (14). When $I s a$ decreases to zero, $D_{R 1}$ turns off and $D_{R 2}$ conducts. It should be noted that the rectified voltage is lost during the interval t_{34}, compared with the primary line voltage. Therefore, the duty cycle loss in SDCM is defined as

Dloss $1=\frac{t 34}{\frac{T s}{3}}=\frac{6 \mathrm{k} . \mathrm{Io} . \mathrm{Lp}}{\mathrm{Vin} . \mathrm{Ts}}$
Where $T s$ is the switching period.

Stage $6\left[t_{4}-t_{5}\right]$:

Fig. 4 (f) Shows During this stage, $V_{A B}=-V_{\text {in } / 2}, V_{\mathrm{BC}}=V_{\text {in } / 2}, V_{\mathrm{CA}}=0$.
$I_{s c}$ flows through $D_{R 6}, i_{\mathrm{sc}}$ and decreases with $i_{p c}$. When i_{sc} decreases to zero, $D_{R 6}$ turns off, the primary and secondary currents of transformer T_{rc} are both zero. The time interval of this stage is given by
$\mathrm{t} 45=\frac{4 k . I o . L p}{\text { Vin }}$
Stage $7\left[\mathbf{t}_{5}-\mathbf{t}_{\mathbf{6}}\right]$:
Fig. 4 (f) Shows Q_{2}, Q_{3}, and Q_{4} conduct at the primary side, while $D_{R 2}$ and $D_{R 3}$ conduct at the secondary side, and the rectified voltage is $k V_{\mathrm{in}}$, whichissimilartothestagel.

4. (a)

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

4.(b)

4.(c)

Fig. 4. Equivalent circuits under different operation stages. (a) Prior to $\left[0 t_{0}\right]$. (b) $\left[t_{0}, t_{1}\right]$. (c) $\left[t_{1}, t_{2}\right]$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

4.(d)

4.(e)

4.(f)

Fig. 4. Equivalent circuits under different operation stages (d) $\left[t_{2}, t_{3}\right]$. (e) $\left[t_{3}, t_{4}\right]$. (f) $\left[t_{4}, t_{5}\right]$.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 4.
Equivalent circuits under different operation stages $(\mathrm{g})\left[t_{5}, t_{6}\right]$.

IV. SIMULATION RESULTS FOR THREE PHASE THREE LEVEL DC/DC CONVERTER

In fig. 5 Simulink model of a $200 \mathrm{~V} / 16 \mathrm{~V}$ DC-DC converter has been proposed .In fig.6.output waveforms of the proposed converter is shown. In the proposed converter there is total six switches out of it $\mathrm{Q}_{1}, \mathrm{Q}_{3}, \mathrm{Q}_{5}$ are given with same duty cycle and $\mathrm{Q}_{2}, \mathrm{Q}_{4}, \mathrm{Q}_{6}$ are same having same duty cycle. Though the switches have same duty cycle all the switches not on for the same time In the proposed converter there are total six switches in which all are under goes soft switching for different duty cycles Fig. 7 \& Fig. 8 shows the simulation fesults for $\quad \mathrm{D}=20 \%$.

Fig.5.Simulink diagram of Three phase Three-Level DC-DC converter.
As the duty cycle increases the output voltage will increases is shown in Table 1. In which the output voltage will increases form $\mathrm{D}=20 \%$ to 46% and efficiency also increases.Fig6 represents output waveforms of the converter and three phase output voltage also observed in which all the phases are shifted by 120°. Fig7 represents soft switching of the proposed converter for Q_{1} and Q_{4} switches . Which is also same for $\mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{5}, \mathrm{Q}_{6}$. Fig.7a shows voltage across Q_{1}, fig 7b.shows the ZVS for Q_{1} from off to on \&fig7c shows on to off of Q_{1} under the ZVS .Fig 8a. shows voltage across Q_{4},fig 8b.shows the $Z V S$ for Q_{4} from off to on

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

\&fig 8c.shows on to off of Q_{4} under the ZVS.Fig9 shows graph between efficiency and load current at duty cycle $\mathrm{D}=20 \%$, which will also represents the efficiency is high for with soft switching than without soft switching.

Fig 6 output waveform

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 Simulation results for Duty cycle 20\%

Voltage across Q_{1}

Fig. 7 for 20% duty cycle(a) voltage across switch Q_{1}, (b). zvs turn off-on $Q_{1}(c)$. zvs turn on-off Q_{1}.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 8 for 20% duty cycle(a) voltage across switch Q_{4}, (b). zvs turn off-on $Q_{4}(c)$. zvs turn on-off Q_{4}.
TABLE1

Duty cycle $(\%)$	Output voltage (V)	Efficiency with soft switching $(\%)$	Efficiency with out soft switching (\%)
15	6.56	51.78	
20	11.7	64.67	38.29
30	13.95	69.81	44.1
40	15.33	71.45	50.36
48	15.8	81.87	54

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 9 Load current Vs Efficiency at $\mathrm{D}=20 \%$

V. CONCLUSION

Soft switching scheme is achieved in each and every switch. Voltage stress across each switch was reduced. By increasing the voltage levels the size of the filter elements may also reduced. The switching losses in the proposed converter are reduced. The proposed control scheme features the following characteristics:
A. Compared with the hard switching technique the losses in switches predominately reduced
B. The input capacitors can realize automatic and inherent voltage balancing, which ensures that all the switches sustain only onehalf of the input voltage.
C. The TPTL converter will operate in different duty cycles.

REFERENCES

[1] F. Liu, G. Hu, and X. Ruan, "Three-phase three-level DC/DC converter for high input voltage and high-power applications-adopting symmetrical duty cycle control," IEEE Trans. Power Electron ., vol. 29, no. 1, pp. 56-65, Jan. 2014.
[2] D. V. Ghodke, K. Chatterjee, and B. G. Fernandes, "Modified soft switched three-phase three-level DC-DC converter for high-power applications having extended duty cycle range," IEEE Trans. Ind. Electron.,vol. 59, no. 9, pp. 3362-3372, Sep. 2012
[3] D. V. Ghodke, K. Chatterjee, and B. G. Fernandes, "Three-phase three level, soft switched, phase shifted PWM dc-dc converter for high power applications," IEEE Trans. Power Electron ., vol. 23, no. 3, pp. 1214-1227,May 2008
[4] J. Jacobs, A. Averberg, and R. De Doncker, "A novel three-phase DC/DC converter for high-power applications," in Proc. IEEE Power Electron.Spec. Conf., 2004, pp. 1861-1867.
[5] H. Cha and P. Enjeti, "A novel three-phase high power current-fed DC/DC converter with active clamp for fuel cells," in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 2485-2489.
[6] A. K. S. Bhat and R. L. Zheng, "A three-phase series-parallel resonant converter-analysis, design, simulation, and experimental results," IEEETrans. Ind . Appl ., vol. 32, no. 4, pp. 951-960, Jul./Aug. 1996.
[7] . R. W. De Doncker, D. M. Divan, and M. H. Kheraluwala, "A three phase soft-switched high-power-density DC/DC converter for high-power applications,"IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63-73, Jan./Feb.1991.
[8]. P. D. Ziogas, A. R. Prasad, and S. Manias, "Analysis and design of a three phase off-line DC/DC converter with high frequency isolation," in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, 1988, pp.813-820
[9] H. Kim, C. Yoon, and S. Choi, "A three-phase DC-DC converter for fuel cell applications," in Proc. IEEE PowerElectron.Spec.Conf.,2008,pp.1290-129

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

M.V.VIJAYALAKSHMI she completed her B. Tech in electrical and electronics engineering from Tirumala engineering College, Narasaraopet in the year 2012. She pursuing M. Tech in Power electronics and drives from Lakireddy Balireddy college of engineering, Mylavaram.

J.SIVAVARA PRASAD received the B. Tech from JNT University ,Hyderabad (electrical and electronics engineering), M. Tech in power and industrial Drives from JNTU, Ananthapur and pursuing Ph. D in switched mode resonant converter from JNTU, Kakinada. Currently he is working as an Assoc. Professor in Dept. of EEE in Lakireddy Balireddy college, Mylavaram. He has published several National and International Journals and Conferences. His area of interest is Power Electronics and Drives, HVDC Converter Reliability.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

