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Abstract: Demand Forecasting is vital for any industry that seeks to gain a competitive edge. It’s important that an industry 
manages its inventory and sales in order to maximize profit. This paper’s purpose is to propose a forecasting technique that uses 
Deep Learning, while drawing a comparative analysis with older forecasting methods namely AR and ARIMA. The study is 
conducted on real world data obtained from a furniture shop based in Pune, wherein the quantity of their most selling product is 
predicted for the next three months. External factors (temperature, CPI, unemployment rate, holiday) which would affect 
consumer demand were considered while forecasting future sales. With the help of deep learning models namely ANN, RNN, 
GRU and LSTMs, it is possible to learn complex non-linear trends and predict future sales accurately by making use of external 
factors along with the time-series trends. This paper focuses on comparing 6 Artificial Neural Network models (ANN), 36 
Recurrent Neural Network models (RNN), and 3 time series models. 
Index Terms: Demand forecasting, Recurrent neural networks, Artificial neural networks, Machine learning, Statistical 
learning 

I. INTRODUCTION 
Demand Forecasting is a means to predict future sales of a company in order to manage its inventory effectively. Accurate sales 
forecasting would mean a company can buy or manufacture its products more efficiently, hence maximizing profits and minimizing 
losses. The biggest advantage of accurate demand forecasting in a store is the dearth of excessive in stock keeping, and on the other 
hand, fulfillment of unattended orders due to lack of material in stock. This paper draws observations and subsequent conclusions 
based on the sales of tables of a furniture store, hence giving the store owners the ability to make informed decisions about how 
many tables they must order in the upcoming months. Thus, it is important to sustain an accurate demand forecasting tool in the 
supply chain industry. 
Time series forecasting is dependent on the previous patterns of purchases by customers. An observed trend consists of two parts: a 
systematic part and a random part. Many complex trends exist in the systematic parts, mostly involving yearly trends and intra-year 
seasonalities. The random part is unaccounted for, and is seemingly hard to predict. Neural Networks have been observed to be 
useful in demand forecasting due to their ability to tackle non-linear data, and capture subtle pattern shifts and minor functional 
relationships within the empirical data. For this particular data set, it is observed that Recurrent Neural Networks (RNN) outclass 
the regular time-series techniques as well as Artificial Neural Networks (ANN) in terms of accuracy of predictions. This paper 
focuses on comparing several different training methods of the RNN, including the basic RNN Cell, Gated Recurrent Unit RNNs 
(GRU), and Long Short-Term Memory RNNs (LSTM), ANN, and the traditional time-series methods. [1] 
Section 2 presents previous research conducted on demand analysis, and the use of ANN in forecasting. Section 3 explains the data 
used in all the models for predicting the desired outcome. Section 4 addresses the model performance measures picked for the 
algorithms used, and explains how they function. Section 5 focuses on the proposed methodologies adopted for the use-case of the 
paper and explains them. Section 6 puts forth the comparative analysis of all the models along with the performance measure of 
each training method. Section 7 compares and concludes the result of the proposed models, and suggests future ideas and 
extensions regarding demand forecasting for the store. 

II. LITERATURE REVIEW 
Demand Forecasting is an old idea which has attracted the attention of several researches in the past. Several studies have been 
conducted which use mathematical tools to predict not only the buying pattern of customers, but also the demand for other entities, 
such as water. These studies are based on time-series models such as naive forecasting, moving-average, exponential smoothing, 
Box-Jenkins method and causal models such as auto regressors and econometric models. 
[2] conducted a survey to determine the degree of familiarity and usage, accuracy obtained, and evaluation of different time-series  
forecasting techniques. [3] used space state models and ARIMA to forecast the sales of five different categories of women’s 
footwear. While these methods performed well, they had a serious limitation of not being able to capture non-linear trends. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue X, Oct 2018- Available at www.ijraset.com 
     

©IJRASET: All Rights are Reserved    199 
 

Moreover, if these methods are not carried out with expertise, there may be a mis-specification of defining the type of variable 
(independent and dependent), and subsequently end up with poor regression results. 
There have been multiple studies conducted in forecasting the retail sales of textiles and clothes, especially in the fashion sector 
[4], [5], [6]. It cannot be resolutely said that the patterns and external factors observed in forecasting textiles and clothes applies to 
furniture forecasting, as not only does the quantity of product sold vary drastically, but also the demand criterion and use-cases do 
not match. 
[7] conducted a study on the bullwhip effect, which arises due to the demand variability amplification along a supply chain from 
retailers to distributors. Ryan, Chen, and Simchi-Levi (2000) studied exponential smoothing forecast and how it affected the 
retailer on the bullwhip effect. [8] researched how the forecasting models performed on supply chains performance using a 
computer simulation. 
[9] delineated the importance of selecting accurate forecasting techniques as it is proven that the use of naive forecasting, moving 
average, or demand signal processing will induce the bullwhip effect. Autoregressive linear forecasting, on the other hand, has been 
shown to diminish bullwhip effects, while outperforming naive and exponential smoothing methods. 
The use of neural networks in demand forecasting overcomes many of these limitations, including the bullwhip effect. Neural 
networks have been mathematically demonstrated to be universal aggregators of functions [10]. 
Aburto and Weber(2007) showcased a hybrid intelligent architecture combining ARIMA models and NNs for demand forecasting 
in SCM and made an inventory management system for a Chilean supermarket. Al-Saba et al.(1999) & Beccali, et al (2004), 
operated on ANNs to forecast short or long term demands for electric load. Chiu and Lin(2004) showed how collaborative agents 
and ANN could work parallelly to enable collaborative SC planning with a computational framework for mapping the supply, 
production and delivery resources to the customer orders. [11] made the use of ANNs, RNNs, and SVMs, to forecast distorted 
demand (bullwhip effect) at the end of the SC. [12] used ANNs to forecast sales for a beverage selling company. Both the above 
papers displayed results where the forecasting ability of ANNs was better than that of their ARIMA counterparts. Despite the fact 
that there have been several studies conducted in demand forecasting using ANNs, there are very few who have used multivariate 
RNNs, along with their different types (LSTM and GRU). 

III. DATA 
Several factors affect buying patterns, namely climate and socioeconomic variables. [13] For the walk-in customer, it is logical to 
presume that a person is more likely to step out of his house to buy luxury goods, such as antique furniture (the data in question), 
when the environment agrees with him.  
For instance, upon observing the sales of tables over a year, it was found that there was a drop in sales during the monsoons. 
Similarly, socioeconomic variables such as unemployment rate of the city and Consumer Price Index (CPI) also contribute to the 
trend, especially for people belonging to the mid socioeconomic status. 
This study uses a total of 6 variables. The date of the purchase, the total number of sales made in a week, temperature (in Celsius), 
CPI, Unemployment Rate (in percentage), and a true/false value indicating whether there was any significant holiday/festival in that 
week. 
The weekly sales data was provided by a furniture company based in Pune, along with the date of purchase. A total of 3 years worth 
of sales was provided (2015-2017). The temperature for those given dates was obtained from the Indian Meteorological Department 
(IMD). The temperature for a week is calculated as: 
 

௔௩௚ݐ =
1
7
෍
଻

௜ୀଵ

 ௜ݐ

where, tavg is the average temperature for a week and ti is the temperature of the day i of the week. 

The CPI and Unemployment Rate was obtained from official government bodies (Reserve Bank of India). The final ‘Is Holiday’ 
variable was manually made and fit into the data.  
All major festivities, holidays, events were marked as ‘True.’ This was constructed as it was found that around the time of Diwali, 
the sales increased substantially every year. 
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Fig. 1. Correlation of the future sales with Unemployment Rate, CPI, and Temperature. 

Finally, all the data was collated into a single file. This data was split into training and test data sets for the models to operate on. 
The split was equal for all, wherein the last three months were used for the testing data set while the remainder was used for 
training. Hence, the forecast is made and compared for the last three months of purchase of the year 2017. 

IV. MODEL PERFORMANCE 
A. Mean Absolute Percent Error (MAPE) 
Error measurement is crucial for tracking forecasting accuracy, monitoring exceptions and benchmarking models against one 
another. After each of the model structures is trained/tested using the training/testing data set, the performance can then be 
evaluated in terms of these statistical measures of goodness of fit. In order to provide a metric to gauge ’goodness of fit’ between 
the observed and predicted values, the Mean Absolute Percent Error (MAPE) can be used. MAPE measures accuracy as the 
average unsigned percentage and is given as follows: 
 

ܧܲܣܯ =
1
ܰ
෍
ே

௜ୀଵ

ฬ
௜ܧ −ܳ௜
௜ܧ

ฬ × 100 

where, Ei is the expected stock quantity; Qi is the predicted quantity found from AR, ARIMA, ANN, RNN, LSTM and GRU 
models, respectively. The smaller the value of MAPE, the better is the performance of the model. 

B. Activation Functions 
When constructing Deep Learning Models, one of the primary considerations is which activation function to choose for the hidden 
and output layer that makes the model give accurate predictions. Without an activation function an NN would simply be a linear 
regression model. The activation function does a non-linear transformation on the weighted sum of inputs enabling NN models to 
fit complex curves that are not possible with simple linear regression. (1.a) exhibits the general formula for an activation function: 

ܻ = ݃(∑ே
௜ୀଵ ( ௜ܹ × ௜ܺ) + ܾ)(1.a) 

where, Y is the output variable; g is the activation function; Wi and Xi are the weight and input for the i
th 

training example 
respectively; b is the bias variable. 
These activated values are primal in machine learning because backpropagation requires the gradients of the activated value to be 
supplied along with the error in order to determine the optimal NN parameter updates. 
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Fig. 2. Flow of an Activation function (Courtesy: www.researchgate.net) 

In Figure 2, x1, x2, ..., xn are input vectors that are multiplied by the weights w1, w2, ..., wn and a bias is added to the summation of 
the input vectors and the weights. The bias and weights only linearly transform the input vectors while the activation function 
allows for non-linear transformation of the input vectors which is what allows machine learning models to learn from complex 
patterns. One of the most commonly used activation functions is the logistic sigmoid which has an S-shaped curve with values 
between 0 and 1. However, it has its limitations and is rarely used due to them. This study uses two other commonly used functions: 
ReLU and Tanh. 
1) ReLU: Given the nature and shape of the sigmoid(x) and tanh(x), they will cause almost all neurons to fire. This makes 

training the model computationally expensive. Though the ReLU is non-linear in nature, it does not activate all the neurons at 
the same time. You can see in Figure 3 if the input is negative it will convert it to zero and the neuron does not get activated. 
This makes the network light and consequently efficient and easy for computation. However, like sigmoid(x), ReLU also falls 
a prey to the gradients moving towards zero i.e. if a negative input given to ReLU(x) is mapped to zero. This may cause the 
NN model to get stuck since the gradient will be 0 and the weights will not be updated during backpropagation. This can 
create dead neurons which never get activated. [14] 

 
Fig. 3. Sigmoid vs ReLU (Courtesy: www.towardsdatascience.com) 
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2) Tanh: Tanh is just a scaled version of the sigmoid activation function and can be represented as follows: 

(ݔ)ℎ݊ܽݐ (3 = 2 × (ݔ2)݀݅݋݉݃݅ݏ − 1 
Fig. 4. Tanh vs Sigmoid (Courtesy: www.towardsdatascience.com) 

As we can see in Figure 4, tanh(x) is scaled such that its range is from -1 to 1. This prevents the NN from getting ‘stuck’ at a given 
state since even if a strongly negative input is provided to tanh(x), it is mapped to a negative output and not 0, which is not the case 
for sigmoid(x). 

C. Weight Assignment 
Initializing a deep neural net with the right weights can be the difference between converging accurately with a reasonable amount 
of time or giving inaccurate predictions with tremendous loss. If the weights of the network are too small, then as the model 
progresses, its weight values shrink and taper off until it’s too tiny to be useful. On the other hand, if the weights are too large then 
the variance of the input tends to grow rapidly as it passes through each layer until it is too big to be useful. 
Since we don’t know anything about the data, we are not sure how to assign weights that would work well for particular problems. 
One good way is to assign the weights from a Normal distribution. This would mean that the weights are picked from values that 
have a zero mean and a finite variance. Consequently, this ensures that as the layers progress in the model the variance remains the 
same. This helps us keep the signal from exploding to a high value or vanishing to zero. 

D. Batching 
Stochastic Gradient Descent (SGD) is a variation of the Gradient Descent algorithm. SGD calculates the error and updates the 
model for every example in the training data set. An improvement to SGD is Batch Gradient Descent. Batch Gradient Descent 
calculates the error for every example in the training data set and only updates the model after all the examples have been 
computed. The weights in the model are updated after every iteration of the training data set i.e., after every epoch. 
It is still likely that our model overfits the data for both SGD and Batch Gradient Descent instead of giving a good generalized fit. 
Therefore, we decided to use Mini-batch Gradient Descent method which is a variation of the Gradient Descent algorithm that splits 
the training data set into small batches that are used to calculate model error and update model coefficient after each batch. This 
way the most optimal weights and biases can be found and a very good fit to the data is achieved. 
A few advantages of Mini-batch Gradient Descent are: 
1) The frequency with which the model updates the weights is higher than Batch Gradient Descent and therefore has better 

convergence and avoids local minimums. 
2) It is computationally more efficient compared to SGD since feeding the data as mini-batches allows not having all the training 

data in memory at once. 
:ߠ (3 = ߠ − ߟ ∑௞

௜ୀଵ
డா
డఏ

 
 
where, ߠis the weight; ߟis the learning rate; k is the minibatch; E is the error function. 
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E. Optimizer 
In Stochastic Gradient Descent a single learning rate is maintained for all weight updates. A learning rate is used to train a network 
and consequently is updated to better fit the network once the training is done. Adam (Adaptive Moment Estimation) on the other 
hand maintains adaptive learning rates for each weight (parameter) in the network, takes into account the momentum, which 
ensures the model does not get stuck at the local minimum, and also addresses the problem of vanishing gradients. Adam gleans its 
properties from 2 other byproducts of the Stochastic Gradient Descent algorithm, namely: 
1) Adaptive Gradient Algorithm (AdaGrad): AdaGrad maintains a different learning rate for every weight (parameter) in the 

model which improves model performance when encountered with sparse gradients. 
2) Root Mean Square Propagation (RMSProp): This also maintains a different learning rate per parameter in the model that 

adapts according to how quickly the magnitudes of the gradients for the weights are changing. Adam not only adapts the 
parameter learning rates according to the mean of the first moments, it also incorporates the use of the mean of the second 
moments of gradients. In effect, Adam calculates the exponential moving average of the gradients and squared gradient and has 
ways to control the decay rates of these moving averages. Adam has become a popular optimizer in deep learning because it 
quickly achieves good results. In the original paper presented by Diederik Kingma from OpenAI and Jimmy Ba [15], Adam 
was applied to the MNIST character recognition problem and the IMBD sentiment analysis datasets. It was seen that Adam 
converged accurately and faster than the other optimizers it was compared with. 

Fig. 5.Comparison of various optimizers. (Courtesy: www.machinelearningmastery.com) 

V. PROPOSED METHODOLOGIES 
A. Neural Networks 
1) Artificial Neural Network (ANN): Artificial Neural Networks (NNs) are versatile, non-linear, and data-driven structures that 

have suitable properties for making predictions. Linear statistical methods are usually efficient for data having seasonal or 
trend patterns, whereas artificial neural algorithms can accommodate the data influenced by special cases like promotion or 
extreme crisis demand fluctuation (Nikolaos Kourentzes, 2013). ANNs are proven to be efficient in structuring complex and 
seemingly “patternless” problems, provided there is plenty of data (Dhar & Stein, 1997).  
In this study, a feed-forward error back-propagation type of ANN is used. In these networks, there is a fixed number of 
neurons in each layer, and these individual neurons are organized such that output signals from the neurons of a given layer 
are passed to all of the neurons of the next layer. Thus, there is a forward unidirectional flow of activations, layer by layer. 
There may be many to none number of layers between the input and output layer, and a certain number would be better than 
another for reasons involving optimal accuracy and minimal overfitting.  
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The basic element of an ANN is a neuron. The model of a neuron is depicted in Figure 6. A neuron k can be described as in 
(1) and (2) 

Fig. 6. Architecture of a neuron in an Artificial Neural Network. 

௝ݐ݁݊ = ∑௡
௞ୀଵ  ௞(1)ݔ௝௞ݓ

௝݋ = ௝ݐ݁݊)߮ −  ௝)(2)ߠ
where, x1, x2, ..., xn are the input variables; wj1, wj2, ..., wjn are the weights for all the input variables for neuron j; netj is the linear 
combiner output; ߠ௝ is the threshold; ߮is the activation function; oj is the output value of the neuron. Neural networks are tuned to 
obtain the desired outcome by a mapping of inputs to the outputs, using training algorithms that minimize loss per epoch. In this 
project, ‘Error Back propagation’ [16] is used. Error Back propagation is a supervised learning model where the error between the 
expected output (target) and the calculated output is calculated and minimized by adjusting the weights between two connection 
layers starting backwards, all the way from the output layer to one layer before the input layer. It does so by minimizing the error 
per layer, not unlike the way gradient descent does for the target. There are multiple layers involved, and each layer has an ‘error’ 
metric that is dependent on the layer(s) before it. 
2) Recurrent Neural Network (RNN): Recurrent neural networks add the explicit management of order between observations 

when learning a mapping function from inputs to outputs. The biggest difference between RNN and ANN is that the output 
obtained from the activation function is fed as the input for the next “layer”, which is actually another “time step” in the future. 
The addition of sequences is a new dimension to the output function being approximated. Instead of mapping inputs to outputs 
alone, the network learns a mapping function for the inputs over time to an output. This makes the RNN capable of handling 
time-series data.  Additionally, RNNs can also learn the Temporal Dependence from the data. Learned Temporal Dependence 
is defined as the context of observations learned over time. That is, the network is shown one input observation at a time from a 
time-series sequence, which then learns from the previously relevant observations that can be used for forecasting.  
The promise of RNNs is that the Temporal Dependence in the input data can be learned, or in other words, a fixed set of lagged 
observations does not need to be specified. Moreover, a Temporal Dependence that varies with circumstance can also be 
learned. 
This leads us to the conclusion that while removing systematic structures from time-series data makes the problem easier to 
model, the general potential of these models does not make it a necessity. Traits such as trend and seasonality are automatically 
picked up upon. [5] 
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       Fig. 7. RNN Cell 
 
 

ܽழ௧வ = ݂( ௔ܹ[ܽழ௧ିଵவ, [௧ݔ + ܾ௔) 

where, a<t> are the activation values for the current time step t, which is obtained by applying an activation function f(x) to a 
parameter Wa , times the activation values from the previous time step a<t −1> 

and current input values xt . 

ݕ
^ழ௧வ = ݃( ௬ܹ[ܽழ௧வ [௧ݔ, + ܾ௬) 

where, y<t > is the forecast value obtained after one time step; g(x) is an activation function applied to get the output. 

3) Gated Recurrent Unit (GRU): GRU has a new unit called c which is a memory cell. The memory cell provides a bit of memory 
that helps the GRU remember a state. 

ܿ
^ழ௧வ = ݃( ௖ܹ[ܿழ௧ିଵவ [௧ݔ, + ܾ௖) 

whereܿ
^ழ௧வis the candidate value for c

<t > 
and is considered for update at every time step t. 

௨߁ = )ߪ ௨ܹ[ܿழ௧ିଵவ,ݔ௧] + ܾ௨) 

where,߁௨iis the update gate and is obtained by applying the sigmoid activation function to weights Wu times the memory cell of the 

previous time step c
<t −1> 

and the current input values x
t 

. Since most of the possible ranges for the input to the sigmoid 

function are either very close to 0 or very close to 1 we can consider the update gate ߁௨to have values either 0 or 1. The role of the 

update gate ߁௨is to decide when the memory cell value c
<t > 

will be updated. Therefore, the equation of c
<t > 

can be given by: 

 
Fig. 8. GRU Cell 
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௨߁ = )ߪ ௨ܹ[ܽழ௧ିଵவ,ݔழ௧வ] + ܾ௨) 

ܿழ௧வ = ௨߁ × ܿ
^ழ௧வ + (1− (௨߁ × ܿழ௧ିଵவ      (1) 

      
If the update gate߁௨ = 1, then (1) becomes: 

ܿழ௧வ = ௨߁ × ܿ
^ழ௧வ 

i.e., the current memory cell c
<t > 

is updated with the candidate valueܿ
^ழ௧வ. If the update gate߁௨ = 0, then (1) becomes : 

ܿழ௧வ = (1− (௨߁ × ܿழ௧ିଵவ  
The current memory cell will not be updated and will be set to the old value c<t −1>. [17] 
4) Long Short-term Memory Cell (LSTM): Like the GRU, LSTM is a type of RNN. LSTMs use backpropagation through time to 

find optimal learning weights which makes the model learn sequences from input data sets. Hence, they are frequently used to 
tackle complex sequence problems that have many features contributing to the pattern. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. LSTM Cell. (Courtesy: colah.github.io) 

Just as the name suggests, LSTMs have memory blocks that make it smarter and more apt for sequence to sequence problems than a 
normal Multilayer Perceptron network. Each block contains a memory unit/state which stores the current state that the LSTM 
network is in and also a number of gates that manages this state and the output of the LSTM unit. A sigmoid activation function is 
used to control whether the gates are triggered or not making the change of state in a block conditional. There are 3 gates within a 
unit: 
a) Forget Gate: Conditionally determines what information is to be discarded from the block. It’s represented as: 

௙߁ = )ߪ ௙ܹ[ܽழ௧ିଵவ, [ழ௧வݔ + ௙ܾ) 

b) Update Gate: Conditionally determines which value the current state will be updated with. It’s represented as:  
             

௨߁ = )ߪ ௨ܹ[ܽழ௧ିଵவ,ݔழ௧வ] + ܾ௨) 

c) Output Gate: Conditionally determines what the unit will output based on the memory and input. It’s represented as: 
 

௢߁ = )ߪ ௢ܹ[ܽழ௧ିଵவ,ݔழ௧வ] + ܾ௢) 
B. Time-Series 
1) Autoregressive Models (AR): An autoregressive model forecasts values in the future, based on the past behavior. It’s used for 

prediction if a pattern or some correlation exists between values at that instant and the values that precede and succeed that 
time lag. Past data is used to give shape to the behaviour, therefore the name autoregressive (the Greek prefix auto– means 
“self.”). This process can be considered as a linear regression of the data in the current time lag against one or more historical 
values in that same series. [6] 
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In an AR model for time-series forecasting, the value of the target(y) at any point t in time is not unlike regular linear 
regression, where it is directly related to the input variable(x). AR models and regular linear regression differ where y is 
dependent on x and previous values for y.  
The AR model has degrees of uncertainty or randomness built in, and hence can be considered as a stochastic process. Even 
though the randomness means that you might be able to forecast future patterns pretty well with the help of historical data, it’s 
impossible to get 100 percent accuracy. Normally the model gets close enough only to pass off as a rough estimator. AR(x) is 
a model that is autoregressive in nature, wherein specific lagged values of yt are used as predictor variables. 
Lags are defined as the parameter where output from one time period affects the following periods. The value for x in AR(x) is 
called the order. For instance, an AR(1) would be of the first order. The output for a first order AR model at some point t is 
related only to time periods that are one time lag apart (i.e. the value of the variable at t–1). Similarly, a second or third order 
AR process would be related to data two or three time periods apart. The AR(x) model is defined by: 

௧ݕ = ߜ ௧ିଵݕଵߔ+ + .+௧ିଶݕଶߔ . . ௧ି௫ݕ௫ߔ+ +  ௧ܣ
where, yt−1,yt−2,...,yt−x are past time-series values, or lags; At is the white noise (randomness); ߜis: 
 

ߜ = (1 −෍
௫

௜ୀଵ

(௜ߔ ×  ߤ

where, ߤis the process mean. 
2) ARIMA: ARIMA models are another way to tackle time series forecasting. ARIMA stands for Autoregressive Integrated 

Moving Average. It aims to describe the autocorrelations in the data and capture a suite of different standard temporal 
structures in time series data.  
It is a generalisation of the AR model and Moving Average model and supplements the notion of integration. The acronym is 
descriptive, capturing the key aspects of the model itself:  
a) AR: Autoregression. A model that uses the relationship between an observation at a defined time instance and some number 

of lagged observations from that time. 
b) I: Integrated. The use of difference of raw observations (e.g. subtracting an observation from an observation at the previous 

time step) in order to make the time series stationary. 
c) MA: Moving Average. A model that uses the dependency between an observation and a residual error from a moving 

average model applied to lagged observations. 
Each of these components is explicitly specified in the model as a parameter. A standard way to represent it is ARIMA(p, d, q) 
where the parameters are replaced with integers. The parameters of the ARIMA model are defined as follows:  
p: The lag order, that is, the number of lag observations included in the model. 
d: The degree of difference, or the number of times the raw observations are subtracted. 
q: The order of moving average window, or, the size of the moving average window. 
A linear regression model is devised including all the parameters mentioned above, and the data is prepared by setting a value for d 
in order to make it stationary, i.e. to remove any trend and seasonal structures that negatively affect the regression model. It is to be 
noted that if one wishes to not include any, or all of the parameters, the respective parameter(s) can be set to 0. This  way, the 
ARIMA model may function as AR, I, MA, ARI, ARMA, or IMA. [5] 
The ARIMA model equation may be generalized as: 

(1 −෍
௣

௜ୀଵ

߶௜ܮ௜)(1− ௗ(ܮ ௧ܺ = ߜ + (1 + ෍
௤

௜ୀଵ

 ௧ߝ(௜ܮ௜ߠ

where, L is the lag operator; ߶�are the parameters of the AR model; ߠ�are the parameters of the MA model; ߳�is the error term. 
There are two important functions associated with ARIMA models: 
Autocorrelation Function (ACF): Autocorrelation is a correlation coefficient. However, instead of correlation between two 
different variables, the correlation is between two values of the same variable at times ti and ti+k . ACF represents the degree of 
persistence over respective lags of a variable. 
Partial Autocorrelation Function (PACF): The partial correlation between two variables is the amount of correlation between 
them which is not explained by their mutual correlations with a specified set of other variables. For example, if we’re regressing a 
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variable Y on other variables X1, X2, and X3, the partial correlation between Y and X3 is the amount of correlation between Y 
and X3 that is not explained by their common correlations with X1and X2. Partial correlation measures the degree of association 
between two random variables, with the effect of a set of controlling random variables removed. 

VI. COMPARATIVE ANALYSIS  

 
Fig. 10. Basic RNN for LR=0.001, Activation=tanh, time-step=6 

 
Fig. 13. ANN for LR=0.01, Activation=Tanh, Hidden Layers=15, Neurons=100 

 
                      Fig. 11. GRU for LR=0.01, Activation=tanh, time-step=1                         Fig. 14. ARIMA(6,1,1) model 
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Fig. 12. LSTM for LR=0.01, Activation=ReLU, time-step=1 

Fig. 15. AR model: A plot of predictions using just the sales (univariate), and using sales with external factors (multivariate) 

TABLE I COMPARATIVE ANALYSIS OF ALL RNN MODELS 
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TABLE II 

COMPARATIVE ANALYSIS OF ANN MODELS 

 
 

TABLE III  
COMPARATIVE ANALYSIS OF TIME-SERIES MODELS 

  
VII. CONCLUSION 

Comparing the best configuration of each model, we have the following result: 
 

TABLE IV 
 COMPARATIVE ANALYSIS OF ALL MODELS 

 
 
We observe that an RNN gives us the least error, hence being the most accurate model. With more data, it is likely that the accuracy 
improves for our RNN, while remaining more or less static with time-series models. 
In the future, the model can be further ameliorated with the inclusion of batch normalization and drop out techniques during 
training, cross-validation sets, inclusion of more, relevant, external factors such as cost of the product, rainfall, and social media ad 
campaigns. Different models such as radial basis neural networks may also be used in order to improve the accuracy of the 
predictions. The scope of the product can be broadened further by predicting the sales of more furniture items the shop sells 
(cupboards, chairs, home decor items). 
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