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Abstract: In this paper, the cubic equation with four unknown given by         1,131124 322233  swszyxsyx  is 
considered for determining its non-zero distinct integer solutions. 
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I. INTRODUCTION 
 It is well-known that there are varieties of cubic equations with four unknowns to obtain integer solutions satisfying them [1-3]. In 
particular, different choices of cubic equations with four unknowns are presented in [4-12]. This paper has a different choice of 
cubic equation with four unknowns given by         1,131124 322233  swszyxsyx  to obtain its infinitely many 
non-zero distinct integer solutions. 

II. METHOD OF ANALYSIS 
The cubic equation with four unknowns to be solved for its non-zero distinct integer solutions is given by 

       322233 131124 wszyxsyx          (1) 
Introduction of the linear transformations 

 02,,  vuuwvuyvux         (2) 
in (1) leads to  

  22222 1 zsusv             (3) 
Again, considering the linear transformations 

 TsXu 12             (4) 

TsXz 2             (5) 
in (3), it gives 
    22242 vTssX             (6) 
The fundamental solution of (6) is  

 vsXvT 12,2 2
00   

To obtain the other solutions of (6), consider its pellian equation 
  12242  TssX  

whose general solution  nn XT ~,~  is given by 

nnnn g
ss

TfX
242

1~,
2
1~


  

where 

1
242

1
242

1
242

1
242

212212

212212










 





 






 





 

nn

n

nn

n

ssssssg

ssssssf

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue X, Oct 2018- Available at www.ijraset.com 
     

550 ©IJRASET: All Rights are Reserved 
 

Applying the lemma of Brahmagupta between the solutions  00 , XT  and  nn XT ~,~ , the other solutions to (6) are given by 
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Employing (4), (5) and (2), the sequence of solutions to (1) is represented as below: 
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In  addition to the above solutions, there are other choices of solutions to (1) that are illustrated below: 
It is worth to note that (6) can be represented as the system of double equations as presented below in Table 1: 

TABLE 1 
System Of Double Equations 

System        1        2          3 

vX     Tss 1   Tss 12    Tss 12   

vX    Tss 1      sT     Ts 1  

Solving each of the above systems, one obtains the values to TvX ,, . 
Substituting these values in (4), (5) and (2), the corresponding solutions to (1) are obtained and they are exhibited below: 
Solutions to system 1: 

      TswTszTssyTssx 24,2,12,12 2222   
Solutions to system 2: 

       222,2,12,12 2323223  sskwsskzsskyssskx  
Solutions to system 3: 

       332,13,422,242 2323223  ssskwssskzsskysskx  
Further, (6) is written as 

  122242  XTssv            (8) 
Assume 

  222422 BsssAsX            (9) 
write 1 as 
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Using (9) and (10) in (8) and employing the method of factorization, define 
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On equating the real and imaginary parts, one obtains 
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Substituting (9) and (11) in (4), (5) and (2), the corresponding values of zyx ,,  and  w  satisfying (1) are given by 

      
      
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III. CONCLUSIONS 
 In this paper, an attempt has been made to find non-zero distinct integer solutions to the cubic equation with four unknowns given 
by         1,131124 322233  swszyxsyx  in conclusion one may search for other sets of integer solutions to the 
considered cubic equation.  
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