
 

6 XI November 2018



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

102 

A New Reconfigurable Architectures and Virtual 
Instrumentation for Self-Automated Driving 

Navjot Singh, Miss Nidhi Saxena 
1B. Tech Mechanical Engineering Scholar, School Of Engineering, Gautam Buddha University 

2Faculty/Research Associate, School Of I.C.T, Gautam Buddha University 

Abstract: This paper describes the implementation of a control system for hands-free driving car based on reconfigurable 
architectures and the virtual instrumentation concepts. The reconfigurable architecture approach means the use of an embedded 
microprocessor (Microblaze, Xilinx) jointly with several hardware modules, which were described in VHDL hardware 
description language. The virtual instrumentation approach refers to the use of LabVIEW environment in order to develop a 
simulation/validation tool, suitable for several mechatronic applications. This work is focused on a vehicle control system design 
and its validation using a LabVIEW program. The control system was developed for solving a well-known problem: the hands-
free driven car. The car control (implemented in the FPGA) and the LabVIEW program are communicated by means of a RS232 
interface. A protocol was defined allowing the user to send defined commands to the controller (typing commands in a 
keyboard). This approach opens a wide variety of possibilities for validating and simulating solutions for several problems in the 
robotic and mechatronic areas. 
Keywords: Embedded Processors, Hands-free driving vehicle, Virtual Instrumentation. 
 

I. INTRODUCTION 
This paper describes the implementation of a control system for hands-free driven car based on reconfigurable architectures and the 
virtual instrumentation concepts. The reconfigurable architecture approach means the use of an embedded microprocessor 
(Microblaze, Xilinx) jointly with several hardware modules, which were described in the VHDL hardware description language. 
The virtual instrumentation approach refers to the use of LabVIEW environment in order to develop a simulation/validation tool, 
suitable for several mechatronic applications. This work is focused on a vehicle control system design and its validation using a 
LabVIEW program. The control system is developed for solving a well-known problem: the hands-free vehicle driving. Many 
researches in hands-free vehicle problem as well as Car-Like Mobile Robot (CLMR) [3][10] have been done, which apply several 
techniques based on complex mathematical models [11], neural networks [5][6], genetic algorithms, fuzzy logic [13], among others. 
Steering a car is confined with conditions of the car’s capability mechanism and the environment. Due to these reasons, it is very 
difficult to design a continuously global controller for a car in order to perform all the maneuvering behaviors. Over the years, 
numerous systems have been developed to provide automatic control for the hands-free driving problem of automobiles [1]. These 
systems automate either steering control (related to as lateral control), throttle and/or brake control (related to longitudinal control), 
and the clutch control. When the automobile control involves all partial control system is called as an Automated Highway System 
(AHS) [9]. Given the complexity of the hands-free driving problem It is very important to define a design environment that just 
allows the testing and validation of different control strategies, apart from a rapid prototyping of the electronic control system. In the 
last years embedded systems has been investigated for automotive industry applications, especially by using reconfigurable 
architecture approaches. Reconfigurable architectures are based on the use of 243 processors (based on the von Neumann Model), 
which are implemented in FPGAs (Field Programmable Gates Arrays), jointly with several hardware parts described through HDLs 
(High-Level Description Languages). 
FPGAs devices provide high performance for parallel computation and enhanced flexibility (if compared with ASICs 
implementations) and are the best candidates for several kinds of hardware implementations. The FPGA can be configured by 
means of software tools, allowing the easy implementation of complex systems such as those related to control/automation 
applications, communications, parallel computing, among others. 
Virtual instrumentation combines mainstream commercial technologies [7], such as the PC, with flexible software and a wide 
variety of measurement and control hardware. Then engineers and scientists can create user-defined systems, which meet their exact 
application needs. Virtual instrumentation approach has been widely used in the context of prototyping of automation/control 
systems. National 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

103 

Instruments Lab VIEW software uses symbolic/graphical representations to speed up the system development of instrumentation 
systems. The software symbolically represents functions through icons. Additionally, the environment permits the representation in 
real time of system’s processes, allowing the designer the rapid validation of the results. 
The objective of this work is to study and solving the hands-free driving automobile problem using reconfigurable architectures and 
virtual instrumentation. Our strategy distinguishes oneself from the classical design flow because of the FPGA-based control system 
design and the use of Lab VIEW environment, in order to represent the current status of the vehicle even in real time. The car 
control was implemented using the Microblaze embedded processor [12]. The control and the LabVIEW program are communicated 
by a RS232 interface, in which was developed a communication protocol. The protocol was defined for allowing the user to send 
commands to the controller (typing in a keyboard), and the controller sends predefined data packages to the LabVIEW environment 
in order to update the current status of the car in real time. 
A few researches have been reported in the use of FPGA and LabVIEW applied to the CLMR or hands-free driving problems. A 
FPGA implementation of a Fuzzy Garage Parking Control (FGPC) is discussed in [10]. Otherwise, the use of FPGA and Lab VIEW 
is discussed in [4] for an accelerator control system design. 
In section 2 the overall architecture of the system is described. Section 3 presents the basic concepts of the proposed embedded 
architectural system in the FPGA. Section 4 discuses the defined command set for the control system. Section 5 describes the virtual 
environment for simulating the vehicle motion. Section 6 describes the communication protocol. Before concluding, section 7 
describes our results. 

II. THE PROPOSED ARCHITECTURE 
The overall control system is composed of an embedded control system based on the soft-embedded-processor Microblaze [12], 
which is implemented in a Spartan 3–based FPGA, and a virtual simulator environment implemented in LabVIEW. The architecture 
is shown in figure 1, where a communication system is implemented using RS232 standard. Additionally, a keyboard is used for 
sending pre-defined commands to the control (that is implemented in the FPGA). 
 
 
 
 
 
 
 
 

Figure 1: The overall System 

The embedded microprocessor implements the main control car tasks in software functions, namely: break, clutch, steering wheel, 
gear and throttle sub-systems of a real vehicle. Each function was described in C language in a structured software approach. 
Several hardware modules were incorporated to the hardware design such as RS232, buttons, display using the EDK tool options [2] 
during the project specification. Finally, a specific keyboard module that was described in VHDL was added to the design. 

A. The Keyboard Interface 
The user can send commands to the controller (implemented in the Microblaze embedded microprocessor). The keyboard can be 
substituted easily by a joystick (see section 4). 

B.  The FPGA Embedded Controller 
The controller is implemented in the Microblaze embedded microprocessor, which run several software functions implemented in C 
language (see section 5). 

C.  The Simulator System (LabVIEW) 
The simulator environment was developed in the LabVIEW system and it is connected to the controller through a RS-232 based 
interface. Additionally, a communication protocol was defined to achieve the communication between the controller and the 
simulator (see section 6). 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

104 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Hardware System 

 
 
 
 
 
 
 
 

Figure 3: Software Project of the Controller 

III. THE FPGA EMBEDDED SYSTEM 
The use of FPGAs to implement different type of algorithms is very attractive because these devices offer a trade-off between 
ASICs (Application Specific Integrated Circuits) and general-purpose processors. The control module was defined using the EDK 
tool [2], in which the Microblaze processor is the system core. This processor has a RISC architecture with thirty-two 32-bit general 
purpose registers, an Arithmetic Logic Unit (ALU), a shift unit and interrupts, among others possible peripherals. 
The EDK tool is a embedded development environment that includes a library of peripheral IP cores, where the Xilinx Platform 
Studio tool suites for intuitive hardware system creation. Additionally, a Built-On Eclipse software development environment, GNU 
compiler and a debugger are included as well. Figure 2 shows the architecture of the control system, which was synthesized using 
the EDK. The communication of the processor with peripherals devices is achieved by the OPB bus (On-chip Peripheral Bus). 
There are several hardware peripherals related to the FPGA-based board resources such as display, keyboard, RS232, push-buttons, 
dip-switches and leds. The processor controls the operation flow of the system by running different special designed software 
functions, which were written in C language and stored in the bRAM-block (see figure 2). 

A.   The Software Modules of the Controller 
Once the processor system was configured and your peripheral were defined all the programming was made in standard C, compiled 
and tested inside of the EDK environment. 
The software modules were described in a structured way, whose block diagram is depicted in figure 3. The module descriptions are 
the following: 
1) The Break.C Module: it receives a defined command to operate the car-break (see section 4). The module verifies what is the 

current position of the brake is and it gives the proper direction to the actuator. A PWM (Pulse-Width Modulation) signal is 
used to control the actuator-speed. 

2) The Clutch.C Module: it receives commands from the user (see section 4) and verifies the current position of the clutch, 
executing a special procedure to drive the pneumatic-system. This module has an alternative way to execute the clutch control 
by a stepper-motor. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

105 

3) The Steering.C Wheel Module: it receives defined commands (see section 4) to achieve a user-defined position. The module 
verifies what is the current position is and it gives the proper direction to the wheel actuator. 

4) The Throttle.C Module: It works in too ways: the first one works for controlling the butterfly position, which is represented by a 
potentiometer. The second one executes a control strategy, where a rotation reference is set by the user. Then, the system 
controls the position until the required rotation is accomplished. A PWM signal is used to control the actuator-speed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Overall Hardware System 

5) The Gear.C Module: this module receives the command of the operator (see section 4) and verifies the current position for 
exchanging the gear-position. This is achieved by two DC-motors, which moves the gear-lever in the X and Y axes in a 
predefined way. The DC-motor’s speed is controlled by two PWM-signals. 
 

B.   The Hardware Modules of the Controller 
The hardware modules are depicted in figure 4. The led, display and pushbutton modules were automatically generated by the EDK 
system. On the other hands, the keyboard module was described in a VHDL file, which implements the PS2 protocol and afterwards 
it was incorporated as a peripheral device in the overall design. The PWM blocks are responsible for generating modulated speed 
control signals of the DC-motors related to the throttle and gear devices. 
The PWM signals were implemented using Microblaze’s timers, which can be added to the design depending on the necessities of 
the system. In this case, only two PWM modules have been generated. Other PWM modules can be easily added to the design using 
the EDK environment. Each timer has two programming registers, namely TCSR0 and TCSR1, which are used for implementing 
different functions, depending on the programming modes (generate, capture and PWM modes). 

IV. THE COMMANDS FOR THE CONTROL SYSTEM 
Several commands were defined in order to control the car and its definitions with a specific syntax and semantic are described in 
table 1. The commands are organized into two sets, describing manual and automatic modes. The first mode defines commands for 
debugging actions, including arrow keys for increasing/reducing the current positing of steering wheel, clutch and engine rotation, 
among others. Other manual commands can be seen in table 1. 
The second mode presents commands for using either via keyboard or into the C program. Each command was implemented in a 
specific C function. For example, the commands related to the clutch (EBA, EBR and EBC) have specific syntax/semantic. In this 
case, EBA and EBR commands have not parameters as long as EBC needs one parameter, which represents a value among 0 to 
100% of the total clutch position. 
The commands are put by the user using the keyboard and then the Microblaze identifies and processes them, before to send the 
appropriate control signals (to the actuators) using the RS232-base protocol (see section 6). 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

106 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. THE SIMULATOR SYSTEM ENVIRONMENT 
LabVIEW is a general-purpose graphical programming system with extensive libraries of functions for any programming tasks. In 
addition, this system includes libraries for data acquisition, instrument control, data analysis, data presentation, and data storage. 
For the modeling of the vehicle kinematics there were applied the three canonical equations that describe the positioning in x and y 
of the nonholonomic vehicle The equations (1, 2 and 3) define the path and the position in x and y. The equation 3 describes the 
instantaneous position of the angle of the wheel. 
 
 
 
 
 
 
The program was designed by means of several software modules, involving the RS232 interface, the car design, the new position 
calculation and the user interface. Some parts of the calculation module were directly implemented in C language in order to 
implement the equations. Figure 5 shows a part of the block of RS232-based serial communication. Additionally, there were 
implemented modules for the kinematics equation implementation (which were implemented in C into the LabVIEW program) and 
the real time vehicle movement implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Software Structure of the Virtual Simulator 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

107 

A. Environment – Kinematics Control 
User's interface is shown in figure 6 that represents the car position and several blocks for monitoring the current engine rotation, 
gear position, throttle, among others. The main task of the vehicle simulation module is the simulation of the kinematics and general 
behavior of the vehicle in normal situations. It was applied the concepts of Virtual Instrumentation by programming in LabVIEW 
environment in order to generate the appropriated signals, depending on the control and status variables. This module is responsible 
for manipulating the virtual car model, which is composed of the corresponding control parts, namely steering wheel, brake, gear, 
clutch and throttle. 
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: 6 The User interface in the LabVIEW 

VI. THE COMMUNICATION PROTOCOL 
A communication protocol was defined in order to implement a full-duplex communication between the control module (FPGA) 
and the LabVIEW program (see figure 1). The controller sends to the LabVIEW a 3-bytes package, where the first one represents a 
specific car state-variable, encoded in 3 bits (namely, front-wheel_1, front-wheel_2, x-position of the gear, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
y-position of the gear, break-position and clutch-position). The second byte represents the information for controlling the clutch, in 
which the 4-most-significant bits are used for generating the stepper-motor signals and the other bits for electro-valve system 
control. The last byte is used for generating and sending PWM signals for throttle (2-bits), steering wheel (2-bits) and break (2-bits). 
For example, the first bit of the throttle is used to represent the direction and the second is used for generating the proper PWM 
signal. Given that the packages are sent in a sequence, the LabVIEW is capable to rebuild the PWM signal using only one bit in the 
serial communication. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 6 Issue XI, Nov 2018- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 
 

108 

In the case of the LabVIEW, It sends to the controller the state-information related with several variables. To achieve this, a 2-bytes 
package is used. The first byte is used to encode a specific state variable (front-wheel_1, front-wheel_2, x-position of the gear, y-
position of the gear, break-position and clutch-position), by using the 3-most significant bits. 
The second byte represents the current value of the state variable. In this case, the LabVIEW program responds to the controller 
about the required state information. 

VII. RESULTS 
The FPGA synthesis results were obtained in the EDK project report. The results are shown in table 2 for the main modules of the 
control system. It was used a Spartan 3 device (xc3s200ft256-4) for the hardware implementation of the controller. The main 
resources consumption is related to the Microblaze implementation. The clock frequency is depicted for each implemented device. 
The results (in percentage of the total of resources available in Spartan 3 device) are related to slices, slices-flip-flops, LUTs, IOB, 
Ram-Blocks (Bram). There are also timing results for each hardware modules, and the critical frequency is for the 7-segment driver 
(about 68 MHz). The same table depicts only a peripheral implementation for PWM signal. However, other PWM devices can be 
248 easily added in the design depending on the design’s requirements. The software implementation of the controller (written in C 
and compiled) is stored in the Bram-bloc (second line of the table 2). In this case the total FPGA-RAM-elements was 66%. 
The LabVIEW program was capable to represent the kinematics and behavior of the vehicle in real time and a realistic way. This 
performance includes the serial communication (with the implemented protocol), the car position calculation and the computational 
cost of the system interface in the PC. The baud-rate of serial communication can be changed in both programs: controller (in the 
Microblaze) and the LabVIEW. The current baud-rate of the serial communication is 9600 bauds. The PWM-signals are transmitted 
through the RS-232-based protocol and the movement of the vehicle is shown in the control-panel of the LabVIEW program taking 
into account this information. 

VIII. CONCLUSION 
A flexible environment for studying the hands-free driving automobile problem was implemented based on reconfigurable 
architecture and virtual instrumentation tool (LabVIEW). The car control was implemented using the Microblaze embedded 
processor. A serial-based communication protocol was defined in order to control the car motion, which includes the steering wheel, 
clutch, gear, break and throttle subsystem. Additionally, the protocol was defined and tested for allowing the user to send commands 
to the controller (typing in a keyboard), and the controller sends predefined data packages to the LabVIEW environment in order to 
update the current status of the car in real time. 
Otherwise, this approach opens a wide variety of possibilities for validating and simulating solutions for several problems in the 
robotic and mechatronic areas [8]. 

REFERENCES 
[1] Donecker, S. M., Lasky, T. A., Ravani, B.: A Mechatronic Sensing System for Vehicle Guidance and Control. IEEE-Transactions on Mechatronics, Vol.8, n.4, 

December (2003) 500 – 510 
[2] EDK: Platform Studio, User Guide. Available at http://www.xilinx.com/ise/embedded/edk_docs.htm. Accessed in November of 2006. 
[3] Baltes, J., and Lin, Y. Lin: Path- Tracking Control of a Non-Holonomic Car-like Robot with Reinforcement Learning. CITR, Tamaki Campus, University of 

Auckland, (1999) 1–17 
[4] Giove, D., Martinis C. D., Mauri, M.: Reconfigurable Hardware Resource in Accelerator Control System. EPAC, Lucerne, Switzerland (2004) 701 – 70 
[5] Gu, D., Hu. H. .: Neural Predictive Control for a Car-like Mobile Robot. International Journal of Robotics and Autonomous Systems, Vol. 39, No. 2-3, May, 

(2002). 1-1 
[6] Li, J. H, Lee, Li, P. M. A Neural Network Adaptive Controller Design for Free-Pitch-Angle Diving Behavior of an Autonomous Underwater Vehicle. Robotics 

and Autonomous Systems. Elsevier, 52 (2005) 132 – 147 
[7] Petko, M., Uhl, T.: Embedded controller design-mechatronic approach. IEEE, Second Workshop on Robot Motion and Control. (2001) 195-200 
[8] Tan, H.S., Guldner, J., Patwardhan, S., Chen, C., Bougler, B.: Development of an Automated Steering Vehicle Based on Roadway Magnets A Case Study of 

Mechatronic System Design. IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 3 (1999) 258 – 27 
[9] Tzuu-Hseng, S., Chang, S-J., Chen, Y-X.: Implementation of Autonomous Fuzzy Garage-Parking Control by an FPGA-Based Car-Like Mobile Robot Using 

Infrared Sensors. International Conference on Robotics & Automation, Taipei, Taiwan, September (2003) 3776 – 378 
[10] Yang, E., Gu, D., Mita, T., Hu, H..: Nonlinear Tracking Control of A Car-Like-mobile Robot via Dynamic Feedback Linearization. Control 2004, University of 

Bath, UK, September 200 
[11] Xilinx. Inc. Available at http://www.xilinx.com/ Accessed in 200 
[12] Zhao, Y., Collins, Jr. E.G..: Robust Automatic Parallel Parking in Tight Spaces via Fuzzy Logic. Robotics and Autonomous Systems. (2005) 111 – 127 



 


