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Abstract: A serious problem in mining data bases is that they are often incomplete, and a significant amount of data is missing, 
or erroneously entered. Missing data occur in almost all serious statistical analyses. In statistics, imputation is the process of 
replacing missing data with substituted values. Simple imputation is attractive and often used to impute missing data whereas 
multiple imputation generates right value to replace.  This paper explores the use of machine-learning based alternatives to 
missing data in large datasets  focusing on several unsupervised Machine Learning algorithms, standard statistical data 
completion (data imputation) methods and Supervised ML techniques  for dealing with missing data.  We have approached the 
data completion problem using two well-known supervised machine learning techniques – Booster Algorithm and DarbouX 
variate. The primary objective  is to highlight the features  on selection of suitable data imputation algorithms and also 
implementing Darboux’s theorem in machine learning techniques to evaluate the performance of every sequence of rational and 
irrational number has a monotonic subsequence.  To generate the inference levels of imputation of missing data, the standard 
UCI repository dataset is deployed. Experimental results reveal a significant improvement of accuracy in the proposed approach. 
Keyword: Darboux’S Classifier, DarbouX Variate, Imputation Algorithm, Naive Bayesian Classifier, Boosting Algorithm, 
Supervised Machine Learning, Unsupervised Machine Learning. 

I. INTRODUCTION 
Missing data imputation is an actual and challenging issue confronted by machine learning and data mining. Most of the real world 
datasets are characterized by an unavoidable problem of incompleteness, in terms of missing values. Missing data are simply 
observations that we intended to be made.  Missing value may generate bias and affect the quality of the supervised learning process. 
Missing value imputation is an efficient way to find or guess the missing values based on other information in the datasets. Data 
mining consists of the various technical approaches including machine learning, statistic and database system. The main goal of the 
data mining process is to discover knowledge from large database and transform into a human understandable format. This paper 
focuses on several algorithms such as missing data mechanisms, multiple imputation techniques and supervised machine learning 
algorithm. Experimental results are separately imputed in each real datasets and checked for accuracy. A simple technique for 
handling with missing value is to bring forward all the values for any pattern removed one or more info items. The major issues 
among here content may be decreased. Especially this is applicable although the decreased pattern content is smaller to attain 
momentous outcome in the study. The mechanism causing the missing data can influence the performance of both imputation and 
complete data methods. There are three different ways to categorize missing data.  Missing Completely At Random (MCAR) point 
into several distinct data sets being removed are separate both of noticeable scalar and of unnoticeable argument. Missing At 
Random (MAR) is the alternative, suggesting that what caused the data to be missing does not depend upon the missing data itself. 
Not Missing At Random (NMAR) is the quantities or characters or symbols that is removed as a precise reasoning. 

A. Machine Learning Approach 
In machine learning, such solutions are called target or output and situations are called input or unleveled data. Situation and 
solution in combination it is called leveled data. 
1) Supervised: So, if you are training your machine learning task for every input with corresponding target, it is called supervised 

learning, which will be able to provide target for any new input after sufficient training. Your learning algorithm seeks a 
function from inputs to the respective targets. If the targets are expressed in some classes, it is called classification problem. 
Alternatively, if the target space is continuous, it is called regression problem. 

2) Unsupervised: Contrary, if you are training your machine learning task only with a set of inputs, it is called unsupervised 
learning, which will be able to find the structure or relationships between different inputs. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 7 Issue II, Feb 2019- Available at www.ijraset.com 
     

65 ©IJRASET: All Rights are Reserved 
 

In the data mining context, machine learning technique is generally classified as supervised and unsupervised learning technique 
both belong to machine learning technique. Supervised classification focus on the prediction based on known properties and the 
classification of unsupervised focus on commonly used classification algorithm known as Naïve Bayesian imputation techniques. 

 
Structure of Machine Learning 

a) Supervised Machine Learning Approach:  Mean Imputation is the process of replacing the missing data from the available data 
where the instance with missing attribute belongs. Median Imputation is calculated by grouping up of data and finding average 
for the data. Median can be calculated by finding difference between upper and lower class boundaries of median class. 
Standard Deviation calculates the scatter data concerning the mean value. It can be convenient in estimating the set of fact 
which can possess the identical aim but a different domain. Estimate standard deviation based on sample and entire population 
data.  

b) Unsupervised Machine Learning Approach:  Another way of learning technique is classified as supervised learning that focus 
on the prediction based on known properties. Naïve Bayes technique is one of the most useful machine learning techniques 
based on computing probabilities. It analyses relationship between each independent variable and the dependent variable to 
derive a conditional probability for each relationship. A prediction is made by combining the effects of the independent 
variables on the dependent variable which is the outcome that is predicted. It requires only one pass through the training set to 
generate a classification model, which makes it very efficient. The Naïve Bayesian generates data model which consists of set 
of conditional probabilities, and works only with discrete data. 
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II. LITERATURE REVIEW 
Miroslaw Pawlak computed a number of nonparametric kernel classification rules, consistency and speed of convergence of kernel 
classification rules established from missing data. Prediction density approach, the deletion techniques, and stochastic mechanism of 
mechanism of generation of missing values can be introduced by imposing probability distribution on the variables. ShenQiping et 
al. described problem solving processes in value management (VM) workshop in the construction industry are experience-based, 
and the quality workshops depends on the experience of the team members. Experimental results show that DM techniques can help 
team members in VM workshops to understand the problems more clearly and to generate more information for recent issues in 
feasibility studies, risk analyses, resource allocation, site layout, and time/cost predictions. Jort Florent Gemmeke et al. focused 
effective way to increase the noise robustness of automatic speech recognition to label noisy speech features either reliable or 
unreliable and to replace the missing data by clean speech estimates. Little and Rubin summarize the mechanism of imputation 
method. Also introduces mean imputation method to find out missing values. The drawbacks of mean imputation are sample size is 
overestimated, variance is underestimated, correlation is negatively biased. For median and standard deviation also replacing all 
missing records with a single value will deflate the variance and artificially inflate the significance of any statistical tests based on it. 
Different types of machine learning techniques are supervised and unsupervised machine learning techniques summarized in.  
Damian Dechev et al., exploited the parallelism in multiprocessor systems is a major challenge in modern computer science. In this 
paper, the author presented the vision for the theory and practice for the design and implementation of a collection of highly 
concurrent fundamental data structures for multiprocessor application development with associated programming interface and 
advanced optimization support. Ingunn Myrtveit et al, analyzed in data sets used to construct effort prediction models in an 
empirical evaluation of imputation methods and Likelihood-based methods. The evaluation suggested full information maximum 
likelihood (FIML) is appropriate when the data are not missing completely at random (MCAR) compared with four missing data 
techniques (MDTs) like listwise deletion (LD), Mean imputation (MI), similar response pattern imputation (SRPI), and full 
information maximum likelihood (FIML) seem appropriate only if the resulting LD data set is too small to enable the construction 
of a meaningful regression-based prediction model. Educational researchers have become increasingly aware of the problems and 
biases which caused by missing data.  Multiple imputation is not implemented by many researchers who could benefit from it, very 
possibly because of lack of familiarity with the technique.  Therefore, the main objective of this author, to help familiarize 
researchers with the basic process of multiple imputation.  Classification of multiple imputation and experimental analysis are 
described by Min Pan et al., summarize the new concept of machine learning techniques like NBI also analysis the experimental 
results which impute missing values. To overcome the unsupervised problem Peng Liu, Liu Lei et al. applied the supervised 
machine learning techniques called Naïve Bayesian Classifier.  Yuri Pirola et al, introduced minimum-recombinant haplotype 
configuration problem (MRHC) provide highly successful in sound combinatorial formulation for genotype phasing on pedigrees. 
An experimental analysis demonstrated the biological soundness of the phasing model and the effectiveness of the algorithm under 
several context. 

III. ANALYSIS OF MULTIPLE IMPUTATION METHOD 
The Multiple imputations for each missing values generated a set of possible values, each missing value is used to fill the data set, 
resulting in a number of representative sets of complete data set for statistical methods and statistical analysis. The main application 
of multiple imputation process produces more intermediate interpolation values, can use the variation between the values 
interpolated reflects the uncertainty that no answer, including the case of no answer to the reasons given sampling variability and 
non- response of the reasons for the variability caused by uncertainty. Multiple imputation simulate the distribution that well 
preserve the relationship between variables. It can give a lot of information for uncertainty of measuring results of a single 
interpolation is relatively simple. 

A. Naïve Bayesian Classifier(NBC) 
In Naïve Bayesian Classifier is one of the most useful machine learning techniques based on computing probabilities. This classifier 
frequently executes especially strong and widely used because it continually execute further advanced classifying methods. Naïve 
Bayesian Classifier uses probability to represent each class and tends to find the most possible class for each sample. It is a popular 
classifier, not only for its good performance, simple form and high calculation speed, but also for its insensitivity to missing data is 
called Naïve Bayesian Imputation classifier to handle missing data. Figure 2 shows the structure of Naïve Bayesian Classifier 
approach.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 7 Issue II, Feb 2019- Available at www.ijraset.com 
     

67 ©IJRASET: All Rights are Reserved 
 

 
Process of DarbouX variate 

B. Darboux Theorem 
The Darboux theorem states that every defined group in Rn consist of a concurrent subgroup. For instance, a subgroup is a group 
that can be derived from another group by deleting any items without modifying the order of the resting items. Every bounded real 
sequence has a convergent subsequence. A subset of R is compact if and only if it is closed and bounded. The set S is rational and 
countable, and treat S as a bounded sequence from 0 to 1. Then it gives the following results for each statement. There is a 
convergent subsequence in S. Darboux  theorem require an infinite construction, and it has no exception. The infinite construction is 
easier than the constructions in other proof. If (Rn) is a sequence of numbers in the closed segment [M, N], then it has a subsequence 
which converges to a point in [M, N]. Let’s have an arbitrary point P, which is between the points M and N. Then observe the 
segment [M, P]. It may contain a finite number of members from the sequence (Rn) and it may contain an infinite number of them. If 
take the point P to be N, the segment [M, N] would contain an infinite number of members from the sequence. 

If take the point P to be M, the segment [M, N] would contain at most only one point from the sequence. Let’s introducing the set 
S= {P ϵ [M, N] | [M, P] contains a finite number of (Rn) members. M belongs to set S. If a point P belongs to S, it mean that [M, P] 
has a finite number of members from (Rn), and it will mean that any subset of [M, P] would also have only a finite number of 
members from (Rn). Therefore for any P that belongs to S, all the point between that P and M would also belongs to S. The set S is 
actually a segment, starting at M and ending in some unknown location [M, N]. Now let’s move to next step R= Sup(S) it means R 
is an accumulation point of (Rn). According to the special case R= M, and assume that R ϵ (M, N).Now we take an arbitrarily small 
ɛ. Observe the segment [M, R+ɛ]. R+ɛ cannot belong to S since it is higher than the supremum. Hence [M, R+ɛ] contains an infinite 
number of (Rn) members. Now the segment [M, R-ɛ]. R-ɛ must belong to S, since it is smaller than the supremum of the segment S. 
Thus [M, R-ɛ] contains a finite number of members from (Rn). But [M, R-ɛ] is a subset of [M, R+ɛ]. If the bigger set contains an 
infinite number of (Rn) members and its subset contains only a finite amount, the complement of the subset must contain an infinite 
number of members from (Rn). Proved that for every ɛ, the segment (R-ɛ, R+ɛ) contains an infinite number of members from the 
sequence. Construct a subsequence of (Rn) that converges to R. Take ɛ to be 1. Take any (Rn) member in (R-1, R+1) to be the first 
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member. This theorem proof that every bounded sequence of real numbers has a convergent subsequence, every bounded sequence 
in Rn has a convergent subsequence and  every sequence in a closed and bounded set S in Rn has a convergent subsequence. 
NBC technique is one of the widely used missing data treatment methods. The basic idea of NBC is first to define the attribute to be 
imputed, called imputation attribute and then, to construct NBC using imputation attribute as the class attribute. Other attribute in 
the dataset are used as the training subset. Hence the imputation problem is becoming a classification problem. Finally, the NBC is 
used to estimate and replace the missing data in imputation attribute. So this paper proposes a new method based on Naïve Bayesian 
Classifier to handle missing data. 
Bayes theorem afford a method of manipulating the rear probability P(C/X) of category  from P(C) is the algorithmic probability of 
category, P(X) is the algorithmic probability of rear and P(X/C) is the likelihood of predictor for given category. Naïve Bayes 
classifier estimate that the outcome of the rate of a predictor (X) on a given category (C) is free from outside control of the point of 
other predictors called conditionally independent.  
1) Algorithm For Posterior Probability: Construct a frequency distributions for each credit across the destination. Transform 

frequency distribution to likelihood distribution. Certainly adopt the help of Naïve Bayesian equation to determine the posterior 
likelihood for every category. 

2) Zero Frequency Problem: When a credit value doesn’t exist with every category value increment 1 to the count for every aspect 
value category sequence. 

3) Numerical Predictors: Arithmetic values need to be converting into their absolute analogue values since creating their 
frequency distribution. The classification with the greatest posterior likelihood is the result of the prediction. 

IV. EXPERIMENTAL RESULTS 
Experimental datasets were carried out from the University Data set of the UCI Repository. Table1 describes the dataset with 
Multivariate Data Characteristics with Categorical Integer Attributes which contains 285 number of instances and 17 number of 
attributes about the datasets used in this paper. The main objective of the experiments conducted in this work is to analyze the 
classification of machine learning algorithm. Datasets without missing values are taken and few values are removed from it 
randomly. The rates of the missing values removed are from 5% to 25%. In these experiments, missing values are artificially 
imputed in different rates in different attributes. 

Data Set Characteristics:   Multivariate Number of Instances: 285 

Attribute Characteristics: Categorical, Integer Number of Attributes: 17 

Associated Tasks: Classification Missing Values? Yes 

TABLE - Dataset Used for Analysis 

The following Figure  represents the Miscalculation Ration in classification of all attribute of original dataset using supervised 
machine learning techniques like NB, Boosting Algorithm and Darboux Variate and unsupervised machine learning techniques like 
Mean, Median and STD without missing values.  

 
Miscalculation Ratio 
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The below Figure 5 represents the percentage rates of missing values using both the techniques like supervised and unsupervised 
using missing values with the rate of 5%, 10%, 15%, 20% and 25% respectively. 

 
Percentage Rates of Missing Values 

The figure  represents the comparison of both supervised techniques - NBI, Boosting Algorithm, DarbouX and unsupervised 
techniques - Mean, Median and Standard Deviation using missing values for all the attributes contains different rate of percentage. 

V. DISCUSSION 
According to the previous discussion, Bayes imputation classifier consists of 2 process. Process 1. State the imputation of element 
and the imputation sequence. Process 2. Apply DarbouX variate to assign missing values. For the sequence suitable approach, as 
stated above the imputation of element and the imputation sequence, Naïve Bayesian classifier assign the missing value in the first 
imputation element of the sequence and then assign the later on the altered new database. DarbouX Variate construct classification 
model, however it can’t be improved systemically also it can’t automatically select suitable features like boosted tree as the 
performance of DarbouX Variate lies on the rightness of the element selection in database. Since every imputation element, main 
facts of its function elements are determined. The most important drawbacks of Bayes classifier is that it has strong feature 
independence assumptions. Another one is if has no occurrences of a class label and a certain element value together then the 
frequency based probability estimate will be zero. According to conditional independence assumption, when all the probabilities are 
multiplied will get zero and this will affect the posterior probability estimate. 

VI. CONCLUSION 
In this paper, the proposed independence classifier has been implemented and evaluated. It gives the complete view about the 
multiple imputation of missing values in large dataset. Single imputation technique generates bias result and affects the quality of 
the performance. This paper focused multiple imputation using machine learning techniques of both supervised and unsupervised 
algorithms. The comparative study of mean, median, standard deviation, NBC, Booster Algorithm and DarbouX variate in which 
standard deviation generates stable result in unsupervised algorithm. Also this paper shows the experimental result of standard 
deviation and DarbouX Variate using limited parameter for their analysis and the performance evaluation stated, among the other 
missing value imputation techniques, the proposed method produce accurate result. In future it can be extended to handle categorical 
attributes and it can be replaced by other supervised machine learning techniques. This paper presents an efficient and effective 
missing data handling method by finding the Miscalculation Ratio and Percentage of Missing Values using DarbouX Variate model. 
Several master plan of DarbouX Variate are examined in the experiments. The evaluation results show that DarbouX Variate is 
superior to multiple imputation. The performance of DarbouX Variate is improved by the attribute selection. When the imputation 
attribute has been defined, the order of irrelevant master plan is recommended. According to the common imputation techniques, 
DarbouX Variate is an effective missing data treatment model. 
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