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Abstract: It has remained a continuous effort of electrical engineers to minimize the operation cost per unit of electricity. With 
the advent of distributed power systems, an interconnection of power systems generating from different sources have come into 
consideration. However, all sources do not operate in the same manner and hence the generation cost for different sources 
varies significantly. Economic Load Dispatch (ELD) can be defined as a technique to schedule the power generator outputs with 
respect to the load demands, and to operate the power system in the most economical way.[7] This problem becomes challenging 
with system constraints and hence there is a need for effective optimization tolls for minimizing the cost to attain the condition of 
ELD. This paper proposes an expert neuro-fuzzy system for operation of power generation to attain the condition of economic 
load dispatch.  
Keywords: Interconnected power systems, economic load dispatch, neural networks, fuzzy logic, neuro-fuzzy expert system.  

I.  INTRODUCTION 
The present day power systems are increasing in size due to increasing demands of power. With such an increase in size, the 
following associated challenges are being faced:[1] 

1) Reducing system operating cost, 
2) Reducing the magnitude of pollution. 
3) Reducing transmission loss. 

Economic Load Dispatch (ELD) can be thought of as an optimization technique that tries to optimize the generation of different 
sources so as to minimize operation cost. 
The mathematical condition for attaining ELD is: 

૚࡯ࣔ              
૚ࡼࣔ

= ૛࡯ࣔ
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Here, 
డ஼௜
డ௉௜

  stands for the increment cost generation for the generator.  
The above condition is also known as the criterion of ߚ distribution or incremental cost-loading principle.[11] 
The optimization problem can be solved in several ways. One of the most promising ways is the use of neuro-fuzzy expert system. 
The subsequent section explains the concept.  

II. FUZZY LOGIC 
Fuzzy systems exhibit the following characteristics to meet the challenge of complex optimization problems, which are: 

A. Parallel processing architecture 
B. Learning and adapting capability i.e. continuously learning from previous data to reduce subsequent errors 
C. Capability to handle non-exact boundaries i.e. fuzziness. 

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of FL imitates the way of decision 
making in humans that involves all intermediate possibilities between digital values YES and NO. The conventional logic block that 
a computer can understand takes precise input and produces a definite output as TRUE or FALSE, which is equivalent to human’s 
YES or NO.The inventor of fuzzy logic, Lotfi Zadeh, observed that unlike computers, the human decision making includes a range 
of possibilities between YES and NO, such as:- 
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1) Certainly Yes 
2) Possibly Yes 
3) Can Not Say 
4) Possibly No 
5) Certainly No 
The fuzzy logic works on the levels of possibilities of input to achieve the definite output. 
Fuzzy Logic Systems Architecture 
It has four main parts as shown − 
Fuzzification Module − It transforms the system inputs, which are crisp numbers, into fuzzy sets. It splits the input signal into five 
steps such as − 
LP x is Large Positive 
MP x is Medium Positive 
S x is Small 
MN x is Medium Negative 
LN x is Large Negative 
Knowledge Base − It stores IF-THEN rules provided by experts. 
Inference Engine − It simulates the human reasoning process by making fuzzy inference on the inputs and IF-THEN rules. 
Defuzzification Module − It transforms the fuzzy set obtained by the inference engine into a crisp value. 
Membership Function 
Membership functions allow you to quantify linguistic term and represent a fuzzy set graphically. A membership function for a 
fuzzy set A on the universe of discourse X is defined as: 
                              μA:X → [0,1]                   (2) 
Here, each element of X is mapped to a value between 0 and 1. It is called membership value or degree of membership. It quantifies 
the degree of membership of the element in X to the fuzzy set A. 
a) x axis represents the universe of discourse. 
b) y axis represents the degrees of membership in the [0, 1] interval. 
There can be multiple membership functions applicable to fuzzify a numerical value. Simple membership functions are used as use 
of complex functions does not add more precision in the output. –There can be several applications for the illustration of fuzzy 
systems. You can modify a FLS by just adding or deleting rules due to flexibility of fuzzy logic. A graphical illustration ensues 
wherein the membership functions are plotted against the voltage levels. All membership functions for LP, MP, S, MN, and LN are 
shown as below:- 

 
Fig. 1 Membership Function 
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III. NEURAL NETWORK 
Artificial neural networks are a practical way of implementing artificial intelligence with an aim to solve fitting problems generally 
needing herculean efforts due to the data size and complexity. The artificial neural architecture tries to imitate the human thought 
process in the following ways: 

A. Process data as a parallel stream independently 
B. Identifying patterns and correlating them. 

Evolving and updating the experiences (called weights) as per the changes in the data received. Neural networks work on training 
and testing mechanism. In this approach, the time series data is fed to a neural network resembling the working of the human based 
brain architecture with a self organizing memory technique. The general rule of the thumb is that 70% of the data is used for training 
and 30% is used for testing. The neural network can work on the fundamental properties or attributes of the human brain i.e. parallel 
structure and adaptive self organizing learning ability. Mathematically, the neural network is governed by the following expression: 

ܻ = ∑ X୧ . W୧   +    θ௜୬
୧ୀଵ                           (3) 

Here, 
 X୧  represents the parallel data streams 
 W୧ represents the weights 
 θ represents the bias or decision logic 
It is mandatory to choose a model that can perform time effective real time data analysis. So the precise identification of the solar 
models is immensely necessary for accurate solar forecasting. There exist certain models for the same which can help in this regard.  

IV. NEURO-FUZZY EXPERT SYSTEMS 
Neuro Fuzzy Systems are a combination of: 

A. Neural Networks 
B. Fuzzy Logic 

Neuro Fuzzy Systems generally are based on expert view or fuzzy logic for deciding the thresholds or boundaries. Subsequently 
the data is fed to neural network for training. After training the system is tested for accuracy. The concept is illustrated 
subsequently: Consider a signal sଵ travelling through a path pଵ from dendrites with weight ݓଵto the neuron. Then the value of 
signal reaching the neuron will be sଵ. ݓଵ.If there are “n” such signals travelling through n different paths with weights ranging 
from  ݓଵ to ݓ௡ and the neuron has an internal firing threshold value of θ୬ , then the total activation function of the neuron is 
given by: 

࢟               = ∑ ܑ܅. ܑ܆   +    ીܖ࢏
ܑୀ૚                    (4) 

Where, 

 X୧  represents the signals arriving through various paths, 

 W୧ represents the weight corresponding to the various paths  

and θ is the bias. 
 
The entire mathematical model of the neuron or the neural network can be visualized pictorially or the pictorial model can be 
mathematically modelled. The design of the neural network can be modeled mathematically and the more complex the neural 
design more is the complexity of the tasks that can be accomplished by the neural network. 
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Fig.2 Block Diagram of a Neuro Fuzzy System 

V. RESULTS 
In the section below the results obtained from the proposed algorithms in last section are shown and described. In first section 
results obtained from dynamic programing are presented which will follow with results from fuzzy logic algorithm. A total of 3 
generating units are utilized in this work for solving unit commitment problem with both algorithms. 

A. Results Obtained by Dynamic Programming Method. 
Certain initial conditions are assumed while solving problem with dynamic programming which are discussed below: 
1) First two units are in operating condition 
2) Last one is switched off from last 3 hours 
3) Losses and reserve capacity are ignored initially 
The load demand form next 24 hours starting from 12 midnight in the scale of 3 hours is available as shown below: 
 

     Table.1 Load Function 

Unit no. ai (Rs/MW2h) 
bi 

(Rs/MWh) 

ci 

(Rs/h) 

1 0.00143 7.3 510 

2 0.00195 7.86 310 

3 0.00483 7.98 78 

      

Hours Load in MW 
12 to 3 400 

3 to 6 450 

6 to 9 700 

9 to 12 600 

12 to 3 550 

3 to 6 500 

6 to 9 750 

9 to 12 650 
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 Table.2 Cost Functions 
Load 

demand 
(MW) 

Unit 
combinatio

ns 
Dynamic approach 

 1 0 0 514.66 
467.87 1 1 0 504.56 

 1 0 1 964.13 
 1 0 0 569.66 

517.87 1 1 0 557.44 
 1 0 1 775.27 

767.87 1 1 0 1397.14 
667.87 1 1 0 716.08 

617.87 
1 1 0 
1 0 1 

663.22 
687.55 

567.87 
1 0 0 624.66 
1 1 0 610.33 
1 0 1 632.21 

817.87 1 1 0 1506.97 
717.87 1 1 0 2275.96 

Table.3 Cost assimilated by Dynamic Approach (with constraints) 

The same problem is solved again in this section bit now using fuzzy logic. The parameters chosen are also same with load demand, 
incremental cost as input to fuzzy model and power generation as output parameter. Here three generators are considered with each 
having a certain capacity as mentioned in below figures (PG1, PG2, PG3). All the parameters are normalized for better 
understanding of fuzzy set, that is crisp set is normalized to for fuzzy number then it is again converted to crisp output using de-
fuzzifier. Based on the fuzzy sets, the membership functions are chosen for the fuzzy variables. 
Load demand is taken from 400 MW to 800MW in this work with three functions Low(L), Normal(N) and high (H). Incremental 
cost is taken from 7 to 10 RsMWhr with three functions Low(L), Normal(N) and high (H) First generating station PG1 has a 
maximum capacity of 600 MW with three-member ship function (L M H). Second generating station PG2 has a maximum capacity 
of 400 MW with three-member ship function (L M H). Third generating station PG3 has a maximum capacity of 200 MW with 
three-member ship function (L M H). 

 
Fig.3: Membership function of load demand variation 
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Fig. 4: Membership function of Incremental cost variation 

 
Fig. 5: Membership function of PG1 

 
Fig. 6: Membership function of PG2 
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Fig. 7: Membership function of PG3 

The results obtained using the fuzzy logic approach (considering all the three units committed). 

VI. CONCLUSION 
It can be concluded from the previous discussions, mathematical formulation and supporting results that the proposed system using 
neuro-fuzzy expert system is capable of achieving the condition of economic load dispatch. Three variants of load demand have 
been considered in the proposed work which is low, normal and high. The optimization considers incremental cost as a variable for 
the system performance metric.  
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