Fibonacci Product Cordial Labelling of some Graphs

Tesssymol Abraham ${ }^{1}$, Shiny Jose ${ }^{2}$
${ }^{1}$ Department of Mathematics, Baselius College,Kottayam-686001
${ }^{2}$ St.George's College,Aruvithura,Ksottayam-686112
${ }^{1,2}$ Mahatma Gandhi University, Kottayam, Kerala

Abstract

An injective function $\varphi: V(G) \rightarrow\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$, where F_{j} is the $j^{\text {th }}$ Fibonacci number $(j=1, \ldots, n)$, is said to be Fibonacci product cordial labeling if the induced function $\varphi^{*}: E(G) \rightarrow\{0,1\}$ defined by $\varphi^{*}(u v)=(\varphi(a) \varphi(v))$ mod2 satisfies the condition $\| e_{\psi}(0)-e_{\psi v}(1) \mid \leq 1$. A graph which admits Fibonacci product cordial labeling is called Fibonacci product cordial graph. In this paper we investigated the Fibonacci product cordial labeling of Shell graph, Comb, Crown, Star graph and Complete bipartite graphs $\boldsymbol{K}_{2 n}$.

Keywords— Fibonacci Product Cordial Labeling; Fibonacci Product Cordial graph, Shell, Comb, Crown

I. INTRODUCTION

In graph labeling vertices or edges or both assigned values subject to certain conditions. There are many types of labeling. More number of labeling techniques found their starting point from graceful labeling introduced by Rosa[7]. A Fibonacci cordial labeling have been introduce by Rokad,A.K., and G.V.Ghodasara[6]. Also Fibonacci product cordial labeling have introduced by Tessymol Abraham and Shiny Jose [8].
We begin with simple,finite, connected and undirected graph $\boldsymbol{G}=(\boldsymbol{V}(\boldsymbol{G}), \boldsymbol{E}(\boldsymbol{G}))$ with p vertices and q edges. In this paper we discussed Fibonacci product cordial labeling of Shell graph, Comb, Crown, Star graph and Complete bipartite graphs $\boldsymbol{K}_{2 \boldsymbol{n}}$. We will provide brief summary of definitions and other information which are necessary for present investigations
Notations:
$v_{\varphi}(0)$: Number of vertices with label 0 under the map φ
$v_{\varphi}(1)$: Number of vertices with label 1 under the map φ
$\varepsilon_{\varphi^{*}}(0)$: Number of edges with label 0 under the map φ^{*}
$\varepsilon_{\varphi^{*}}(1):$ Number of edges with label 1 under the map φ^{*}
FPCL: Fibonacci product cordial labeling

II. PRELIMINARIES

A. Definition 2.1 Fibonacci Product Cordial Labeling [8]

An injective function $\varphi: V(G) \rightarrow\left\{F_{1,}, F_{2}, F_{3}, \ldots F_{n}\right\}$ where F_{j} is the $\mathrm{j}^{\text {th }}$ Fibonacci number $\left.0=1, \ldots, \mathrm{n}\right)$, is said to be Fibonacci product cordial labeling if the induced function $\varphi^{*}: E(G) \rightarrow\{0,1\}$ defined by $\varphi *(u v)=(\varphi(u) \varphi(v)) \bmod 2$ satisfies the condition $\left|e_{\varphi *}(0)-e_{\varphi *}(1)\right| \leq 1$.

B. Definition 2.2 Fibonacci Product Cordial Graph [8]

A graph which admits Fibonacci product cordial labeling is called Fibonacci product cordial graph
C. Definition 2.3 Comb Graph [3]

The comb is a graph obtained by joining a single pendent edge to each vertex of a path. It is denoted by $P_{n} A K_{1}$

D. Definition 2.4 Shell Graph [5]

A shell graph of size n , denoted by S_{n} is the graph obtained from the cycle $C_{n}\left(v_{1} v_{2} \ldots \ldots v_{n}\right)$ by adding $(n-3)$ consecutive chords incident with a common vertex. The vertex at which all the chords are concurrent is called the apex vertex. The shell is also called fan fn-1. Thus, $S_{n}=\mathrm{fn}-1=\mathrm{Pn}-1+\mathrm{K} 1$.
E. Definition 2.5 Crown Graph [3]

A crown graph is the graph obtained from the cycle $C_{n}\left(v_{1} v_{2} \ldots \ldots v_{n}\right)$ with pendant edge attached at each vertex of the cycle. It is denoted by $\mathrm{Cn} \odot \mathrm{K} 1$

III. PROPERTIES OF FIBONACCI PRODUCT CORDIAL LABELING

A. Theorem 3.1

Shell graph S_{n} is a Fibonacci product cordial graph for $n \geq 3, n \in N$.

1) Proof: Let w_{1} be the common end vertex (apex) and $w_{2}, w_{3}, \ldots, w_{n}$ be the other vertices of a Shell Graph S_{n}. Then each edge is of the form $w_{1} w_{j}$ where $2 \leq j \leq n$.
We define labeling function $\varphi: V(G) \rightarrow\left\{\boldsymbol{F}_{1}, \boldsymbol{F}_{2}, \boldsymbol{F}_{3}, \ldots \boldsymbol{F}_{n}\right\}$ as follows.,
$\varphi\left(w_{i}\right)=F_{i}$ if $1 \leq i \leq n$
Define $\varphi^{*}: E(G) \rightarrow\{0,1\}$ by $\varphi^{*}\left(w_{1} w_{j}\right)=\left(\varphi\left(w_{1}\right) \varphi\left(w_{j}\right)\right) \bmod 2$ for $2 \leq j \leq n$
Then we have $\left|e_{q *}(0)-e_{q *}(1)\right| \leq 1$. Hence Shell graph admits Fibonacci product cordial labeling and hence it is a Fibonacci product cordial graph.
2) Illustration 3.1:

Figure 3.1. FPCL Of Shell Graph S_{11}

B. Theorem 3.2

The Comb is Fibonacci product cordial graph for all $n \in N$

1) Proof: Let G be a comb graph $P_{n} A K_{1}$ with 2 n vertices and $2 \mathrm{n}-1$ edges.Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n} w_{1}, w_{2}, \ldots, w_{n}\right\}$ where $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of the path P_{n} and $w_{1}, w_{2}, \ldots, w_{n}$ are the pendant vertices attaching by the path P_{n} Then $E(G)=\left\{e_{i}, e_{i j}\right\}$ where $e_{i}=\left(v_{i,} w_{i}\right)$ and $e_{i j}=\left(v_{i}, v_{j}\right)$

Case 1: $n \equiv 0,1 \bmod 3$

Define the function $\varphi: V(G) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots F_{2 n}\right\}$ as

$$
\begin{gathered}
\varphi\left(v_{i}\right)=\left\{\begin{array}{cc}
F_{2 i-2} & \text { if } i \equiv 0 \bmod 3 \\
F_{2 i} & \text { if } i \equiv 1 \bmod 3 \\
F_{2 i+2} & \text { if } i \equiv 2 \bmod 3
\end{array}\right\} \\
\varphi\left(w_{i}\right)=F_{2 i-1} \quad \text { if } \quad 1 \leq i \leq n
\end{gathered}
$$

Then $\varphi^{*}: E(G) \rightarrow\{0,1\}$ by $\varphi^{*}\left(e_{i}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(w_{i}\right)\right) \bmod 2$ and $\varphi^{*}\left(e_{i j}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(v_{j}\right)\right) m o d 2$ admits Fibonacci product cordial labeling. Hence Combs are Fibonacci product cordial graphs.
2) Illustration 3.2:

Figure 3.2. FPCL Of Comb $P_{7} A K_{1}$

Case 2: $n \equiv 2 \bmod 3$

Define the function $\varphi: V(G) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots F_{2 n}\right\}$ as
For $1 \leq i \leq n-1$

$$
\begin{aligned}
& \varphi\left(v_{i}\right)=\left\{\begin{array}{cc}
F_{2 i-2} & \text { if } i \equiv 0 \bmod 3 \\
F_{2 i} & \text { ifi } i \bmod 3 \\
F_{2 i+2} & \text { if } i \equiv 2 \bmod 3
\end{array}\right\} \\
& \varphi\left(v_{i}\right)=F_{2 i} \quad \text { if } i=n \\
& \varphi\left(w_{i}\right)=F_{2 I-1} \quad \text { if } \quad 1 \leq i \leq n
\end{aligned}
$$

Then $\varphi^{*}: E(G) \rightarrow\{0,1\}$ by $\quad \varphi^{*}\left(e_{i}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(w_{i}\right)\right) \bmod 2$ and $\varphi^{*}\left(e_{i j}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(v_{j}\right)\right) \bmod 2$ admits Fibonacci product cordial labeling. Hence Combs are Fibonacci product cordial graphs.
3) Illustration 3.3:

Figure 3.3. FPCL Of Path $P_{11} A K_{1}$

C. Theorem 3.3

The Crown $C_{n} \odot K 1$ is a Fibonacci product cordial graph for all $n \geq 3, n \in N$

1) Proof: Let $\mathrm{C}_{\mathrm{n}} \odot \quad \mathrm{K} 1$ be a Crown graph with 2 n vertices and 2 n edges. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n} w_{1}, w_{2}, \ldots, w_{n}\right\}$ where $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of the cycle C_{n} and $w_{1}, w_{2,} \ldots, w_{n}$ are the pendant vertices attaching by the cycle C_{n}. Then $E(G)=\left\{e_{i}, e_{i j}\right\}$ where $e_{i}=\left(v_{i,}, w_{i}\right)$ and $e_{i j}=\left(v_{i}, v_{j}\right)$

Case 1: $n \equiv 0 \bmod 3$

Define the function $\varphi: V(\operatorname{Cn} \odot \mathrm{~K} 1) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots . F_{2 n}\right\}$ as

$$
\varphi\left(v_{i}\right)=\left\{\begin{array}{cc}
F_{2 i-2} & \text { if } i \equiv 0 \bmod 3 \\
F_{2 i} & \text { if } i \equiv 1 \bmod 3 \\
F_{2 i+2} & \text { if } i \equiv 2 \bmod 3
\end{array}\right\}
$$

$$
\varphi\left(w_{i}\right)=F_{2 i-1} \quad \text { if } \quad 1 \leq i \leq n
$$

Then $\varphi^{*}: E(\operatorname{Cn} \odot \mathrm{~K} 1) \rightarrow\left\{\mathrm{O}_{3} 1\right\}$ by $\quad \varphi^{*}\left(e_{i}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(w_{i}\right)\right) \bmod 2$ and $\varphi^{*}\left(e_{i j}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(v_{j}\right)\right) \bmod 2$ admits Fibonacci product cordial labeling. Hence Crowns are Fibonacci product cordial graphs.
2) Illustration 3.4 :

Figure 3.4. FPCL Of Crown $C_{9} \odot R_{1}$

Case 2: $n \equiv 1,2 \bmod 3$

Define the function $\varphi: V(\mathrm{Cn} \odot \mathrm{Ki}) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots F_{2 n}\right\}$ as
For $1 \leq i \leq n-5$

$$
\varphi\left(v_{i}\right)=\left\{\begin{array}{cc}
F_{2 i-2} & \text { if } i \equiv 0 \bmod 3 \\
F_{2 i} & \text { if } i \equiv 1 \bmod 3 \\
F_{2 i+2} & \text { if } i \equiv 2 \bmod 3
\end{array}\right\}
$$

For $n-4 \leq i \leq n$

$$
\begin{aligned}
& \varphi\left(v_{i}\right)=F_{2 i} \\
& \varphi\left(w_{i}\right)=F_{2 i-1} \quad \text { if } \quad 1 \leq i \leq n
\end{aligned}
$$

Then $\varphi^{*}: E(\operatorname{Cn} \Theta \mathrm{Ki}) \rightarrow\{0,1\}$ by $\quad \varphi^{*}\left(e_{i}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(w_{i}\right)\right) \bmod 2$ and $\varphi^{*}\left(e_{i j}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(v_{j}\right)\right) \bmod 2$ admits Fibonacci product cordial labeling. Hence Crowns are Fibonacci product cordial graphs.
3) Illustration 3.5:

Figure 3.5. FPCL Of Crown $C_{8} \odot K_{1}$
D. Theorem 3.4:

The Star graphs $K_{1 n}$ are Fibonacci product cordial graphs for $n=2,3,5$

1) Proof:

Let u be the apex vertex and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the pendant vertices of the star graph $K_{\mathbf{1}, n}$.Then $E\left(K_{1, n}\right)=\left\{e_{i}\right\}$ where $e_{i}=\left(u, v_{i}\right)$
Define : $V\left(K_{1, n}\right) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots F_{n}\right\}$ as

$$
\varphi(u)=F_{1} \quad \text { and } \quad \varphi\left(v_{i}\right)=F_{i+1} \quad \text { for } 1 \leq i \leq n
$$

Also define $\varphi^{*}: E\left(K_{1, n}\right) \rightarrow\{0,1\}$ by $\varphi^{*}\left(e_{i}\right)=\left(\varphi(u) \varphi\left(v_{i}\right)\right) \bmod 2$. Then we have $\left|e_{\varphi_{*}}(0)-e_{q^{*}}(1)\right| \leq 1$. Hence Star graphs $K_{\mathbf{1}, n}, 1 \leq n \leq 3$ are Fibonacci product cordial graphs.
2) Illustration 3.6:

Figure 3.6.FPCL Of Star Graph $K_{1,3}$
E. Theorem 3.5

The Complete bipartite graphs $K_{2, n}, 1 \leq n \leq 4$ are Fibonacci product cordial graphs

1) Proof: Let $X=\left\{u_{1}, u_{2}\right\}$ and $\boldsymbol{Y}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the bipartition of the vertices of the complete bipartite graphs $K_{2, n}$
Then $E(G)=\left\{e_{i j}\right\}$ where $e_{i j}=\left(u_{i} v_{j i}\right)$ for $i=1,2$, and $1 \leq j \leq n$
Case 1:n $\equiv 0 \mathrm{mad} 2$
Define $: V\left(K_{2 m}\right) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots F_{n}\right\}$ as

$$
\begin{array}{ll}
\varphi\left(u_{i}\right)=F_{i} & \text { for } 1 \leq i \leq 2 \\
\varphi\left(v_{i}\right)=F_{2+i} & \text { for } 1 \leq i \leq n
\end{array}
$$

Also define $\varphi^{*}: E\left(K_{2 n}\right) \rightarrow\{0,1\}$ by $\varphi^{*}\left(e_{i}\right)=\left(\varphi(u) \varphi\left(v_{i}\right)\right) \bmod 2$.Then we have $\left|e_{q *}(0)-e_{q *}(1)\right| \leq 1$.
Hence Star graphs $K_{\mathbf{1}, n}, 1 \leq n \leq 3$ are Fibonacci product cordial graphs.

Case 1:n $\equiv 1$ mod 2

Define : $V\left(K_{2, n}\right) \rightarrow\left\{F_{1}, F_{2}, F_{3}, \ldots F_{n}\right\}$ as

$$
\begin{array}{ll}
\varphi\left(u_{i}\right)=F_{2 i-1} & \text { for } 1 \leq i \leq 2 \\
\varphi\left(v_{i}\right)=F_{2 i} & \text { for } 1 \leq i \leq n
\end{array}
$$

Then $\varphi^{*}: E\left(K_{2, n}\right) \rightarrow\{0,1\}$ by $\quad \varphi^{*}\left(e_{i}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(w_{i}\right)\right) \bmod 2$ and $\varphi^{*}\left(e_{i j}\right)=\left(\varphi\left(v_{i}\right) \varphi\left(v_{j}\right)\right) \bmod 2$ admits Fibonacci product cordial labeling. Hence Complete bipartite graphs $K_{2, n}$ are Fibonacci product cordial graphs .
2) Illustration 3.7:

Figure 3.7. FPCL Of Complete Graph $K_{2 A}$

IV.CONCLUSION

Here we proved five new theorems corresponding to Fibonacci product cordial labeling. Analogous results can be derived for other graph families as well as for different graph labeling problems..

REFERENCES

[1] Cahit ,I,.1987. Cordial graphs: a weaker version of graceful and harmonious graphs,Ars Com-bin.,23: 201-207.
[2] David M. Burton. Elementary Number Theory, Sixth edition, Tata McGraw-Hill Publishing Company Limited, New Delhi.
[3] Gallian J.A. 2014. A dynamical survey of graph labeling, The Electronic Journal of Combinatorics, 17, DS6.
[4] Harary, F.1972. Graph Theory, Addision Wesely, Reading Mass
[5] S. .Meera ,M. Renugha and M.Sivasakthi. Sep 2015. Cordial Labeling For Different Types Of shell Graph, International Journal Of Scientific \&Engineering, Vol 6,pp 1282-1288.
[6] Rokad A.H. and G.V.Ghodasara.Feb 2016 .Fibonacci Cordial Labeling of Some Special Graphs , Annals of Pure and Applied Mathematics, Vol. 11, PP 133-144
[7] Rosa, A.1966-1967.On certain valuation of the vertices of a graph, Theory of Graphs, International Symposium, Rome, New York, and Dunod Paris : 349-355.
[8] Tessymol abraham and Dr.Shiny Jose .Jan 2019.Fibonacci product cordial labeling, International Journal of Emerging Technologies and Innovative Reseach,Vol.6,PP 58-63.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

