

3 IV April 2015

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved 376

Fault Tolerant Protocol for UDS Flash
Programming through Controller Area Network

(CAN)

Divya.J1, Shanthi.T2
1PG Scholar, 2Assistant Professor, Department of EEE

1,2Kumaraguru College of Technology, Coimbatore, India

Abstract— This paper proposes a fault tolerant protocol for CAN (Control Area Network) flash programming. Recently,
the need of CAN flash programming is rapidly increasing because the number of installed ECU (Electronic Control
Unit) increases noticeably and the adoption rate of CAN are very high. Although some development tool companies and
semiconductor companies provide solutions for Flash Programming in a effective way, there is no standards for CAN
flash programming until now. Furthermore, there is always a risk of nature , when Flash programming an application
into flash memory using downloaded programming algorithms, that an externally created aspects may corrupt the
programming process. This paper gives a brief suggestions that the standards of CAN flash programming should include
mechanism for the recovery from faults and certification process. Interaction diagram between host PC and ECU
summarizes the messages and includes an additional phase for the certification of the CAN communication capability of
ECU. The Reprogramming operation is done through Diagnostic communication protocol UDS. For a Diagnostic
Communication a testing tool is connected to the in-vehicle network. The Tester (Client) sends a request to a Specific
ECU and the ECU (Server) answers the request with a response. Here, Simulated ECU comes in play by sending
responses to the request.
Keywords— CAN, Flash programming, Fault tolerant, Protocol, UDS.

I. INTRODUCTION

As the mechanical components in automotives are replaced With electronic implementations, automobile sectors deals with
more And more ECUs (Electronic Control Unit). Furthermore, almost every ECU adopts CAN (Control Area Network) to Share
the information of sensors and controllers. According to the popularization of CAN-installed ECU, the needs of calibration and
diagnostics using CAN are increasing rapidly. The interaction layer for the purpose of diagnostics, which supports continuous
data transfer. Established KWP 2000 on Kline tends to be replaced with KWP 2000 on CAN, which then replaced by UDS on
CAN .UDS(Unified Diagnostics Protocol) defines the protocol of calibration and Diagnostics using CAN communication.
After the calibration and diagnostics with CAN takes root successfully, it is known that CAN will improve the maintenance of
ECU software. If ECU software can be updated by widely spread CAN, automobile makers can update ECU software ordinarily
in cooperation with service network and can avoid expensive recall eventually. Recently, protocols for the software update with
CAN are published by several development tool companies and semiconductor companies. However, they are not standardized
like the calibration and diagnostics with CAN through UDS until now and they are a kind of implementation based on the
primitive functions. For the implementation of CAN flash programming, robust treatment of faults during programming process
is as important as the establishment of global standards. Because ECU adopting CAN flash programming generally does not
have a special hardware for the flash programming and mode selection, ECU can become dead by the failure during
programming process if it does not have any solution for the recovery from faults. In spite of the seriousness of the faults during
CAN flash programming, published solutions assume that the programming process will not be disturbed and terminates
properly.
At first, this paper enumerates potential disturbances during flash programming. In spite of the various causes of disturbances,
malfunctions with respect to CAN flash programming can be summarized into two categories 1) incomplete application, 2)
application incapable of CAN Communication. Incomplete application can be caused by power down of ECU, communication
line disconnection, insane CAN node and shut down of host PC during CAN flash programming. Incapability of CAN
communication of ECU after CAN flash programming can be caused by the incorrect setting of CAN driver, the incorrect
setting of transportation layer of CCP and the incorrect setting of task
The process of Flashing, calibrating and diagnosing multiple ECUs while monitoring bus communication and acquiring
measurement signals from the vehicle environment is mandatory, the calibration and test engineer’s ability to measure and

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved 377

calibrate an ECU’s control and diagnostic parameters depends on reliable access to the ECU.

We need the following components to Flash ECUs:

A. Flash file
File data to be ported to the ECU’s flash memory.

B. Flash tool
Flashes the contents of the flash file on to the ECU.

C. Flash job (flash sequence)
Sequence of diagnostic functions for reprogramming the flash memory in the ECU.
Proposed protocol specifies that ECU can be reprogrammed via CAN without the risk of being dead node.

II. FAULT ANALYSIS AND REQUIREMENTS

The fault analysis result of potential disturbances which may occur during programming flash memory through CAN. In spite of
various causes of disturbances, malfunctions with respect to CAN flash programming can be summarized into two categories:
“incomplete program” and “application incapable of CAN communication”.
Flash programming process consists of four phases: handshaking, erasing, programming and verification. Faults occurring
before the erasing phase do not affect the recoverable capability of ECU. Although faults between the erasing phase and the
programming phase are various, they are summarized into one category named “incomplete program” because the existing
program is destroyed and the new program is incomplete. In the verification phase, process discontinuance itself does not mean
the deficiency of recoverable capability the discontinuance of verification phase without another defect does not affect the
recoverable capability of ECU. If the CAN driver setting of new program such as CAN ID and communication speed is
incorrect, ECU is unable to use communication through CAN. If there is a defect of the setting of OSEK COM interaction layer,
CCP transaction layer and communication, transfer of data is Aborted and flash programming fails in spite of the correct
operation of CAN communication.
New requirement of CAN flash programming protocol, which reflects the result of fault analysis and refers to the existing
implementation, is listed in the below.

A. Existing flash Reprogramming through K-line uses a Specific message during the power-on period or uses hardware switch
as the indicator of booting mode. Because CAN has multiple connected nodes, specific message during the power-on period
cannot be used. Furthermore, attaching hardware switch to every ECU is too expensive and Impractical. Therefore, flash
programming must be able to be initiated by CAN message during normal mode without any additional hardware.

B. Current usage of flash memory generally occurs by Using block-wise access control ; While erasing information in a
certain block, reading information in the block is impossible. Therefore, the program implementing downloading should
reside in RAM area.

C. To obtain the independence of operation context and the maintenance of the operation, it is preferred to develop the
 CAN flash programming as three independent programs : application program, booting program and downloading

program.

III. DIAGONISTIC PROTOCOL

Protocols have always been standardized whenever different test systems (e.g. in brand and independent repair shops) are to
access vehicles or different ECUs have to be integrated into subsystems – requirements that are in fact always demanded
nowadays. There are two types of communication. Onboard type of communication and Diagnostic type of communication
between Tester application and ECU’s

A. Onboard Communication

1) ECU’s coverts input information from sensors to output information for actuators.
2) ECU’s transmit information to other ECU’s and Vice versa (on board communication)

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved 378

3) For onboard communication ECUs are interconnected via an in-vehicle communication network(e.g.: Controller Area
Network)

Fig: 1Onboard Communication

B. Diagnostic Communication
1) For a Diagnostic Communication a tester is connected to the in-vehicle network.
2) The Tester (Client) sends a request to a Specific ECU (e.g. : #1), and the ECU (Server) answers the request with a response

Fig:2 Diagnostic Communication

C. Diagnostic Service
Diagnostic communication requires Diagnostic Protocol A diagnostic protocol contains a set of communication parameters and
diagnostic services (request and responses).
UDS (Unified Diagnostic Service) is based on the standards KWP2000 and CAN. It was created with the goal of standardizing
different implementations of the predecessor standards and new requirements stemming from further developments in
technology and new standards to form one generally valid diagnostic protocol. UDS describes the layer 7 protocol (diagnostic
services) but is based on an extended version of the diagnostic protocol of KWP2000 on CAN (ISO 15765-2). UDS specifies
data link independent requirements of automotive diagnostic services in road vehicles. UDS is given as a standard in ISO
14229-1:2013 and allows diagnostics to control functions on an in-vehicle Electronic Control Unit (ECU).

D. Security
UDS services may have a security mechanism applied, whereas predefined services may not. These Services with a security
mechanism are designed with the appropriate security level name in the column where the security applies. UDS defines various
levels of security leading to 33 security levels for general use and there is no assumed relationship between levels.
The UDS protocol gives a various number of necessary functionalities for developers and testers so that they can perform,

1) read or write data in ECU memory,
2) program the flash memory
3) Create specific behavior for an ECU.

The implementing concept of UDS protocol in an ECU that has protocols implemented while not overlapping with the others
during a development. According to the current standard, UDS is a protocol that must be specifically developing to use with

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved 379

CAN buses. A CAN frame contains a data field and a CAN ID field.
The values of these fields are determined by higher layer protocol such as UDS, Universal Calibration Protocol (XCP), CAN
Calibration Protocol (CCP) and On-Board Diagnostics II (OBD2), which have a variety of frame formats. The OSI layer must
be classified first for an efficient implementation

Fig 3 OSI Model for UDS Protocol

E. Message Structure
The message structure of the UDS services consistent with the structure of OBD: The first byte is the Service ID. Then the
functionality of the service follows the so-called sub-level identifiers.
At UDS, there is the possibility to give positive response or Negative response to Request messages. If the Service request ID
success and all criteria being matched Positive response will be provided by the ECU or Simulated ECU. On the other hand if
any of the criteria is being not matched Negative response has to be sent to the diagnostic tester application. Negative responses
in the absence of positive response messages are useful.

IV. SEQUENCE DIAGRAM OF PROTOCOL

A. Design Flow

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved 380

B. State Diagram Of Protocol
Designing the state diagram of ECU state, which is Controlled by the CAN messages defined in the sequence Diagram, makes
the transitions. Figure 4 shows the state diagram of proposed protocol. Circle and rounded rectangle represents a state. Double
line represents the boundary of a program. Arrow represents a state transition and dotted arrow represents a context switching
by direct jump to reset ISR (Interrupt Service Routine). It is assumed that three programs have their own ISRs. Dark circle(•)
represents the starting point of the certain level of a hierarchical state diagram. Bull’s eye(�) represents the ending point of the
certain level of a hierarchical state diagram. Developed state diagram has only one ending point at the highest level, which
depicts the reset forced by the application program. In this case, hardware reset will occurs as the gray arrow depicts.
Downloading Flag and Active Flag is the variable reflecting the current ECU state and they are located in treated as TRUE for
the Downloading Flag, but FALSE For the Active Flag. Such interpretation of state variable sets the initial state of ECU to
Downloading-Inactive State. Erasing operation is implemented by two states: Ready To Erase and Erasing, to guarantee the
parallel operation during the execution of erasing command. Such kind of implementation is needed because a general flash
memory is asynchronous, in other words, the return from an instruction does not mean the completion of the instruction.
Because of the same reason, the programming operation is implemented by two states : Ready To Program and Programming.
In general, the periodic triggering of finite state machine guarantees the parallel operation by multi-thread, which is an
important advantage over an infinite polling loop. Especially, lossless CAN communication needs the implementation suitable
for the parallel operation. Path (A) and (B) in Figure 4 show the state transition sequence of the handshaking phase. After the
first flash programming of the booting program using a special hardware such as BDM and JTAG, new application program can
be programmed by the designed CAN flash programming. Path (A) is the state transition sequence when there is no valid
application program. When the power turns on or hardware reset occurs, the booting program becomes active and switches to
the downloading program according to the TRUE value of the Downloading Flag. Path (B) is the state transition sequence when
the CAN flash programming procedure starts from the existing application program. The application program, when receiving
the DO_SETACTIVE message, sets the Downloading Flag to TRUE to represent that the existing application program is
invalid and sets the ActiveFlag to TRUE to represent that downloading procedure is onward. Then, the application program
stops and starts again The ECU to switch to the booting program. After the booting program acquires the control of ECU, it
switches to the downloading program according to the state variables. The erasing phase and the programming phase is
performed in the Downloading-Active state

Figure 4 State diagram of protocol

C. Experimental Result
Figure 5 shows the experimental result that ECU can recover from two kinds of faults, which are selected as the major targets
through the fault method analysis. In this case, ECU state variable in Flash memory remains in the Downloading state. Mark (B)

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved 381

represents the “application incapable of CAN communication” category. Here, ECU state of Flash memory waits in the
Downloading-Active state because the new application does not pass the verification phase. In spite of the different causes,
ECU remains in Downloading-Active state. Consequently, ECU can wake into Downloading-Active state just by reset as
depicted by the path (1) in Figure 5. New Started host PC program initiates new downloading process by sending a DO_ENUM
message. The ECU switches to Downloading-Inactive state when receiving the DO_ENUM message as depicted by the path (2)
in Figure 6. Eventually, ECU is initialized into the same state as the case when the downloading process starts without any
application program. It is inspected that all kinds of faults, which occur after setting the Downloading Flag and the Active Flag
to TRUE, can be recovered by the same mechanism through diverse experiments. Furthermore, It is inspected that all kinds of
faults, which occur in the handshaking phase, can be recovered just by reset because the application program is not destroyed.
Finally, it is confirmed that the proposed protocol can recover all kinds of faults occurring at any phase of CAN flash
programming At this moment, it must be reminded that one of the important objectives of CAN flash programming is the
ordinary maintenance of EUC software through wide service network. Therefore, to make CAN flash programming practical,
disturbances able to occur in loosely controlled casual working environment such as a normal garage should be considered.

Figure 5. Recovery from faults

D. Conclusion And Future Scope
The proposed fault tolerant protocol for CAN flash programming guarantees that ECU can recover from diverse faults by
recording the ECU state in EEPROM, which is usual in almost every micro-controller. This paper analyzes possible faults
systemically through the fault analysis method. Furthermore, it is ensured that the protocol can be implemented with small
source code and small memory consumption. This paper insists that fault tolerance such as the proposed protocol should be
considered in developing CAN flash programming standards.

REFERENCES

[1] “Fault Tolerant Protocol for CAN Flash Programming”, Ho Gi Jung1, Jea Young Hwang1, Pal Joo Yoon1 and Jai Hie Kim2 MANDO Corporation,Korea
Yonsei University, Korea
 [2] “Road vehicles-diagnostic system-keyword protocol 2000”, ISO14230
[3] Jim Samuel, “Developing diagnostics on KWP2000 and CAN”, SAE paper No. 981112, 1998
[4] Kim Lemon, Tammy Dmuchowski and Bruce Emaus, “Introduction to CAN calibration protocol”, SAE paper No. 2000-01-0389, 2000
[5] Frank Voorburg, “Rapid application development for embedded systems using CAN calibration protocol”, SAE paper No. 2002-01-1170, 2002
[6] “XC166 flash-on-the-fly : A concept to flash via CAN”, Application note AP16048 V1.1, www.infineon.com,2004
[7] Sven Deckardt, “Flash kernel programming on an HC12 microcontroller”, Application note AN-IMC-1-002 V1.0, www-vector-informatik.de, 2003
[8] Julien Mothre, “CCP-flashing technical documentation V1.1”,ETAS SAS, Rungis, 2002
[9] Ross McKuckie, East Kilbride, “Flash programming via CAN”, Application note AN1828/D rev. 1, Motorola Inc.,2002
[10] Martyn Gallop and Joanne McNamee, “HCS12 load RAM and execute bootloader user guide”, Applicationnote AN2546 Rev. 0, Motorola Inc., 2003

