
 

7 IV April 2019

https://doi.org/10.22214/ijraset.2019.4122



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                                Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com 
     

 
©IJRASET: All Rights are Reserved 

 
681 

Interference Minimization in TDMA MAC 
Protocols for WSNs  

Dr. Syeda Gauhar Fatima1, Mrs. Syeda Kausar Fatima2, Saquib Mohiuddin3 

1Professor, ECE, Deccan College of Engineering & Technology 
2Associate Professor, Shadan College of Engineering and Technology 

3Student, ECE, Deccan College of Engineering and Technology 
Abstract: This paper presents an analysis of the impact of shadow fading on the performance of TDMA slot allocation, with 
latter being calculated in terms of the resultant in-network interference versus spatial reutilization. Simulations are presented 
which demonstrate that for Wireless Sensor Networks operating in shadow fading channels, protocols that feature TDMA slot 
allocation based on channel probing, e.g. LEMMA, lead to a significantly lower interference when compared with protocols 
based on the n-hop neighborhood criterion.  
Index Terms: Wireless Sensor Networks, TDMA MAC protocols, Slot Allocation, Interference Avoidance, Shadow Fading 
Channel  

I. INTRODUCTION  
WIRELESS Sensor Networks (WSN) has been a domain of increasing research effort in the recent years, and several dozens of 
MAC protocols have been developed for operation on WSNs. The major part of these protocols can be classified as contention-
based, or TDMA-based, or even as combinations of these main approaches. Contention based protocols present some specific 
sources of inefficiency such as idle listening, collisions, message overhearing, and control packets overhead. TDMA protocols, on 
the other hand, are well suited to avoid these problems, but require tight synchronization, and often require complex and sometimes 
message intensive slot assignment algorithms to guarantee collision and interference free slot schedules.  
In this paper, we focus on the slot assignment procedures that are used to avoid collisions and interferences in the communication 
slots. A large number of TDMA protocols, such as [1], [2], [3], and [4], among others, use an n-hop (usually 2-hops) neighborhood 
criterion that can be described as following: a node can allocate a slot that is not previously occupied by its n-hop neighbors, hoping 
that this procedure is sufficient to avoid collisions and interferences. However, this approach does not work well in some types of 
networks, namely for those irregulars in shape, as we noted in a previous work [5]. Moreover, this procedure has the disadvantage 
of being message intensive.  
Some other TDMA MAC protocols take off from the n-hop neighborhood criterion, but rely on different node transmission powers 
in order to avoid and reduce possible interferences on the slots. For instance, RID (Radio Interference Detection in Wireless 
Sensor Networks, see [6]) aims to remove possible interference in the slots, by transmitting two detections packets: one 
transmitted at higher power (HD packet), followed by another transmitted at normal power (ND). With the transmitting node’s 
identification given in the HD packet, and by calculating the power level at the reception of the ND packet, the receiver nodes can 
therefore predict the possible interfering nodes. However, these procedures are very complex and require high computations.  
Motivated by these observations, we designed the LEMMA (Latency-Energy Minimization Medium Access, see [5]) protocol, a 
new TDMA-based MAC protocol that uses cascading time-slot allocation to minimize latency while still achieving a very low 
duty-cycle. Although cascading TDMA slot allocation is not new, LEMMA bases slot assignment decisions on the interference 
really experienced by the WSN nodes through the carrier-sense mechanism. Its slot allocation procedure consists in probing the 
slots for any activity, both in the father node side, and the child node side, and trying to allocate the slot through messaging 
exchanges between them, such that other competing pairs for the same slot loose contention and quit allocating the slot.  
Moreover, the behavior of the n-hop protocols is not studied in the presence of radio irregularity patterns, which are common in 
real world scenarios. In this paper, we study by simulations, the behavior of the n-hop protocols, and of the LEMMA protocol, in 
the presence of radio irregularity.  
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II. RADIO IRREGULARITY PROPAGATION MODELS 
Several authors (c.f., [7] and [8]), argue that the unit radius model, that is commonly used, namely for MAC performance analysis, 
is simplistic and not accurate, and that the radiation pattern is not circular, but quite irregular in shape. These variations are due to 
phenomena like reflections, diffraction, and scattering.  
Often used model that accounts for these effects, is the shadowing model referred in [7], which can be described by the following 
expression? 
PL () d [dB]= PL(d0) [dB]+10×n×log10⎜⎝⎛⎜ dd0⎞⎟⎠⎟+Xσ    

Where PL(d) is the path loss at distance d, PL(d0) is the path loss at the reference distance d0, n is the path loss exponent (which 
values 2 for the free space model), and Xu is a random variable, given in dB units, with a normal distribution of zero mean and 
standard deviation of σ. This last term adds irregularity to the radiation pattern, because it introduces a variation from the isotropic 
pattern of the two first terms of the second half of the expression. Higher standard deviations lead to higher irregularities in the 
radiation patterns. Several authors, such as [9], measured values of up to 4 dB, for the standard deviation of Xσ, in WSNs 
scenarios.  
Another model that accounts for the anisotropic path losses is RIM (Radio Irregularity Model) presented in reference [8]. In the 
RIM model, the received signal strength can be modeled by expressions (2) through (4):  
RecSignalStrength = SendPower − DOIAdjustedPathLoss + Fading  (2)  
Where the DOIAdjustedPathLoss (DOI stands for Degree of Irregularity) can be computed as following:   
DOIAdjustedPathLoss = PathLoss×Ki  (3)  
Ki is a random irregularity factor, valuing around 1, and i is an integer index variable ranging between 0 and 359, for each degree of 
the plane. The Ki factors are calculated by expression (4):  
Ki =1, if I=0  (4)  

Ki = ki−1± Rand ×DOI, if 0<I<360,  

Where k0 −k359 ≤ DOI must hold.  
In expression (4), DOI is an experimentally estimated parameter, which gives the degree of irregularity of a given transmitting node, 
in some scenario; Rand is a continuous random variable that follows a Weibull distribution; the signs ± are randomly set.  
The authors relate experiences that showed the ability of the RIM model to generate radio patterns that are adequate to model the 
observed data. One property of this model is that it generates continuous patterns, as the authors say that they are the observed 
ones. In that paper values are also presented for the DOI parameter, for several MicaZ [13] nodes, which vary between 0.015, and 
0.03. Adequate Weilbull distribution parameters are also given.  

III. SIMULATION MODEL  
This section describes how the behavior of the n-hop neighborhood slot allocation criterion, and of the LEMMA interference 
avoidance procedure, was assessed in the presence of radio irregularity. As many protocols usually use a 2-hop criterion, the 
simulations that are presented in this paper were also made for this particular case.  
A 100-node square grid was setup in the simulator, with the sink node placed at the upper-right corner.  
A tree topology was assumed, with the sink being the root node, and each node communicating with a random neighbor, selected 
among those that were closest, and that offered more progress towards the sink.  
In order to set the distance between the nodes, a result from reference [10] was used, which states that the RSSI (received signal 
strength), needed to have a high packet receiving rate (PRR), should be higher than –93 dBm, for the MicaZ motes. The minimum 
received power was thus set to –90 dBm, to allow a safety margin of 3 dB, and the transmitting power of the MicaZ motes was set 
to the maximum value, 0 dBm.  
With relation (1), but not considering the random term Xu, the following expression can be derived:  

d =d0×10^⎛⎜ PL(d)−PL(d0) ⎞⎟  (5)  
 ⎝ 10×n ⎠ 
The reference distance d0 was 1 meter, for which we had a value of –60 dBm of received power, or a path loss of 60 dB, value that 
was provided by some previous experiences in our labs, and which agrees with the values that are referred by other authors. Then, 
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with a path loss of 90 dB for PL(d), expression (5) can be used to estimate the maximum communication range, d, which is here 
designated dcomm. For instance, for a path loss exponent of 2, expression (5) gives a value of 31.6 m for dcomm. The dimension of 
the sides of the grid squares was set to  

0.85×dcomm 2, in order to let nodes located diagonally to communicate directly.  
In order to predict the possible interferences, we used a result mentioned in reference [11], which states that for having a high 
PRR, near 1, the signal-to-noise ratio (SNR) should be at least 9 db. Therefore, a value of –99 dBm (i.e., -90 dBm for 
communication, plus –9 dBm for the signal-to interference margin) could be set for the threshold of the signal strength, above 
which it can interfere with the normal communication that is established in the slot.  
Expression (5) can also give the minimum distance (dnot_int) at which another node should be, in order to not interfere to a 
communication that is established in a given slot, between two nodes that are at a distance of dtx:  

⎛ 9dB ⎞ 
dnot _int ≥ d tx ×10^⎜ ⎟   (6)  

⎝10×n ⎠ 
For instance, for a path loss exponent n of 2, relation (6) yields dnot_int ≥ 2.8×dtx. This result shows that a 2-hop criterion is enough 
to avoid interferences in a simple model that does not account for irregularity. For higher path loss exponents, the obtained 
relations are more favorable, because the signal strengths decay faster. However, this is not true for lower path loss exponents, as 
we will show later.  
Our simulations used the more conventional shadowing log-normal of expression (1). As radio irregularity was included in the 
model, the criterion that we used for the computation of the 2-hop neighborhood was not geometric based, but rather 
communication-based, and it was defined as following: the 1-hop neighbors of a given node, are those nodes that can 
communicate directly with that node; the 2hop neighbors of a given node, are the 1-hop neighbors, plus the nodes that can 
communicate directly with the 1-hop neighbors.  
The simulations began to firstly allocating randomly the slots in a distributed breadth-first manner. The interference avoidance 
procedure of the 2-hop neighborhood slot allocation criterion consisted in not using the slots that were previously occupied by the 
2-hop neighbors of the node, and by the 2-hop neighbors of the father node. For the LEMMA protocol the shadowing model was 
used along with the interference avoidance procedure. If a pair of nodes, of a father and a child, saw no signal level above the 
interference level of –99 dBm, when they tested the slot for occupancy, they considered the slot as not occupied. The shadowing 
model was used to estimate the signal strength at each side of the pair of the father and the child.  
Finally, we ran a test to realize if, for all pairs of father and child, there were transmitted signals, coming from other nodes that used 
the same slot, with strengths such that the 9-dB signal-to-interference ratio was not respected, both in the father and the child side. 
In this procedure, the shadowing model was used again in order to estimate these possible interfering signal strengths.  
In the simulations, a frame of 1 second of duration, and 68 slots were used. All simulations results were taken from a set of 50 
simulation runs.  

IV. SIMULATION RESULTS AND DISCUSSION 
Fig. 1 shows the average number of interferences that were obtained by the simulation software, for different path loss exponents, 
and different standard deviations of the lognormal model, and for the 2-hop criterion. And Fig. 2 shows the respective results for the 
LEMMA interference avoidance slot allocation procedure.  
As it can be seen, when the irregularity of the transmission path losses is considered, both slot allocation methods fail to have all the 
slots free from interference, but the numbers of interferences obtained with the 2-hop criterion are several times higher than those 
obtained with the LEMMA method. Similar results were also obtained with the RIM model. The LEMMA method presented also 
superior performance when compared with the 2-hop algorithm.  
The number of interferences augments with lower path loss exponents, and with higher standard deviations. If we decrease the path 
loss exponents, the signals attenuations are lower with the distance, and therefore the irregularity term of the shadowing model can 
be felt at higher distances.  
Referring again to Fig. 1, it can be seen that the 2-hop criterion fails to avoid interferences, even when no irregularity is added (zero 
for standard deviation), when we have lower path loss exponents (in the case, valuing 1.7). This can be explained by solving 
expression (6), which yields dnot_int ≥ 3.38×d tx for a path loss exponent of 1.7.  
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This relation shows that the 2-hop criterion is not enough to avoid interferences, because nodes situated at a distance of 32 +12 ×d tx 

= 3.16×d tx can still interfere. However, if we lower the signal-to-interference ratio to 8 dB, for which we can expect a PRR around 
95%, according to reference [11], the 2-hop criterion would also present no interferences, for the no radio irregularity scenario, 
because expression (6) would yield dnot_int ≥ 2.96×d tx .  

 
Std Dev 

Figure 1. Number of interferences of 2-hop neighborhood slot allocation criterion, when the shadowing model is added. 

 
Std Dev 

Figure 2. Number of interferences of the LEMMA slot allocation procedure, when the shadowing model is added. 

The higher number of interferences that is obtained for the 2-hop criterion seems to be due to a geometric reason: avoiding slots 
that are used in a 2-hop communication neighborhood is not sufficient in some cases to avoid interferences, since the distance of 
interference is several times higher than the distance of communication, and not merely twice that value. Adding irregularity 
seems to worsen even more this effect. When irregularity is added, some transmitted signals can become stronger, or weaker. It is 
possible that the signal transmitted by one node is not strong enough to make it a 2-hop neighbor of another node, but still being 
strong enough to interfere with its reception. Another observed phenomenon is that for lower path loss exponents, the number of 
interferences experienced by the 2-hop criterion begins to decrease for high values of σ. The higher number of 2-hop neighbors 
that are present when the irregularity increases explains this. This last phenomenon is also referred and predicted by mathematical 
analysis in reference [12], and Fig. 3, and 4 of our simulations corroborate it. But when the neighborhoods of a given node grow, 
the nodes that could interfere begin to be very far, and therefore have lower probability to do so.  
It is also worth to note that higher radio irregularities are usually present for higher path loss exponents (see [12], for this 
observation). Therefore, the highest values of interferences that were obtained for the basic LEMMA protocol simulations, and 
shown in the upper-right side of Fig. 2 – which were present in the scenarios with higher values of σ and with the lower path loss 
exponent values of 1.7, and 2 – correspond to situations that are probably rarer. This argument supports also the conclusion that 
the basic LEMMA protocol is much better than the 2-hop criterion in terms of number of resulting interferences.  
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Figure 3. Number of 1-hop neighbors obtained for different path loss exponents and irregularities. 
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Figure 4. Number of 2-hop neighbors obtained for different path loss exponents and irregularities. 
 

Regarding to the interferences that are present with the LEMMA protocol, they result from the asymmetry of the links: suppose that 
a pair of father and child had previously allocated a slot, and another pair of father and child achieve to allocate the same slot, 
because they do not feel it as occupied. Due to asymmetry of the transmissions, that arises when radio irregularity is added, this last 
pair can interfere with the communications of the former pair.  
We are working on a solution to this problem. It consists in adding tones, to the basic LEMMA protocol allocation messages. These 
tones are transmitted at a higher power level than that of the protocol messages, and were proved to be able to overcome the 
asymmetry of the links, leading to almost zero interferences.  

V. CONCLUSIONS AND FUTURE WORK 
This paper has presented a comparison between TDMA slot allocation based on LEMMA, and protocols that employ the n-hop 
neighborhood criterion. Simulations lead to the conclusion that in real environments, the LEMMA protocol will show a substantial 
advantage over the more often used 2-hop neighborhood criterion, in terms of number of interferences that persist after slot 
allocation. Interferences in the LEMMA protocol are due to asymmetric links, while interferences in the 2-hop criterion are also 
inherent to its geometric nature. The 2-hop neighborhood slot allocation criterion presents an intolerable number of interferences 
when a more realistic radio propagation model is considered, and when a realistic signal-to-interference ratio is used. This criterion 
also presents problems when more irregular shape networks are considered.  
We also presented an extension to the basic LEMMA that achieves almost zero interferences.  
For future work, the authors intend to continue this study with the application of more sophisticated radio propagation models, 
such as by adding spatial correlation to the shadow fading model.  
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