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Abstract: Wireless sensor networks are significant networks for gathering environmental statistics and observing phenomena. 
Irregularities initiated by hardware and software faults, strange actions, and malicious attackers disturb the reliability of 
information collected through such networks. Hence, abnormality recognition procedure is an essential phase in constructing 
sensor networks to guarantee data excellence for correct assessment. This paper presents a novel scattered working anomaly 
recognition scheme that processes the variation of sensor estimations in major module space. This model allocates the discovery 
process above the network to reduce energy consumption whereas confirming high recognition value. The recognition 
effectiveness and proficiency of this scheme are shown through trials on real world dataset from Sensor scope system project. 
Experimental outcomes reveal this scheme accomplished high recognition level with comparatively little incorrect positive rates 
compared to an existing scheme.   
Keywords: Wireless Sensor Networks; Anomaly Recognition; Distributed Processing; Principal Component Analysis; Principal 
Component Classifier.  

I. INTRODUCTION 
Wireless sensor networks are small sized, low power, energy limited, and multifunctional devices named sensors that are used to 
gather data from an environment or monitor an occurrence [1]. The limited resources such as processing capabilities and energy 
increase the possibility of these networks to be susceptible to variety of misbehaviors or anomalies. Data anomaly is defined in [2] 
as, “an observation that appears to be inconsistent with the reminder of a dataset”. Hardware and software faults, observations 
errors, unusual events, or intrusions are possible causes for sensor data anomalies. Therefore, to assure the integrity of sensor 
observations and identify important interested events in the monitored phenomena, detection of anomalies should be considered for 
the design of any sensor network system. Distribution of anomaly detection process over nodes in WSN has been proposed as a 
solution to reduce the computational load of detection methods in nodes. However, another factor should be considered when 
designing any distributed detection model which is the communication overhead caused by transmitting large amounts of data 
between nodes. Some distributed anomaly detection models have been designed to consider the communication overhead such as 
[3-6]. The concept of sharing in these works depend on on that each node implements the abnormality detection technique by its 
own resources and then transmits only a summary of local detection model to the significant location such as cluster head or base 
station in order to construct a global detection model. The global model is then returned to the nodes for using it in anomaly 
detection of subsequent observations. A distributed deviation detection model in WSN was described in [4] to avoid the unnecessary 
communication and computational effort. This model was designed based on a non-parametric statistical technique called kernel 
density estimator. The hierarchical structure which is always used to implement any distributed solution was not adopted for this 
model. Instead, the hierarchical structure was emulated by assigning each group of low capacity sensors to one of some limited 
more powerful sensors based on spatial proximity. An In-network outlier detection algorithm was proposed in [5] and aimed at 
reducing the communication overhead results from massive data transmission in WSN. This algorithm was based on distance 
similarity to find the global anomalies in WSN. In this model, each node applies the distance similarity measure to find the 
anomalies and broadcast its result to its neighbours. Other nodes perform the same task until all nodes agree on a common decision 
on anomalies. Broadcast communication lead to high energy consumption. The problem is worsen when deal with large scale WSN.  
A Quarter Sphere Support Vector Machine (QSSVM) based distributed anomaly detection model was proposed in [6] to detect the 
anomalous observations in sensors. The technique of applying this model is as follows:  
1) Each sensor node runs the QSSVM on its own data to find the local anomalous observations and the parameter Rj of the 

QSSVM that distinct normal observations from anomalous.   
2) Every single sensor directs the local parameter Rj to the parent node in the configuration.  
3) The parent node gathers the radii of the children nodes and constructs the global radius Rm.   
4) The parent returns the global radius parameter Rm to its children nodes to detect anomalies in their data by means of this radius.   
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Range of distributed prototypes was considered based on the QSSVM [3, 7-10]; nevertheless, the common inadequacy of these 
replicas is the forbidden computational cost of applying the QSSVM on the inadequate sensor resources. Furthermore, the need of 
SVM on some constraints significantly disturbs the detection efficiency. These factors must be chosen for each WSN application 
and hence upset the pragmatism of the solution. The authors of [15] proposed statistical based outlier detection methods based on  
temporal and spatial correlations of sensor data. The performance of these approaches is extremely dependent on certain statistical 
parameters that disturb the usability of these methods for operational detection. In this paper, a new distributed accessible anomaly 
recognition scheme is considered by means of the one class principal component classifier (OCPCC) previously proposed in [11] to 
detect anomalies as they happened. The modification between the scheme proposed in this paper and the model in [11] is the 
selection of detection threshold and the variant of PCA algorithm used. In [11], the threshold was chosen by clustering the 
dissimilarity vector of training data via automated clustering threshold method which has high computational cost to be used for 
online detection.  In addition, the called candid-covariance free incremental principal component analysis (CCIPCA) algorithm 
which was originally proposed in [12] and utilized for data reduction for WSN in [13] was used as a core for the plan of the 
proposed scheme in this paper. Data samples chosen from sensor scope GSB [14] dataset were used to authenticate the detection 
usefulness of this scheme in terms of detection rate and false alarm rate. An evaluation with an existing distributed model in [15] 
was directed to show the advantages of the proposed scheme.  
The rest of paper is organized as follows: section 2 details out the plan of the proposed model. Section 3 provides the experimental 
results and discussion. Section 4 concludes the paper and recommends some future research guidelines.  

II. PROPOSED SCHEME 
Two main stages are involved in the design of the proposed scheme which are training stage and detection stages. Details of each 
stage are given in the following sections.  

A. Training Stage  
In this stage, the normal observations are gathered at every sensor to find out the local normal model (LNM) and send it to the 
cluster head (CH) for constructing the global normal model (GNM). The procedure of building the LNM is as follows: the training 
normal observations STrain are standardized by the mean value (μ) and the standard deviation value ( ) of training observations. The 
eigenvector (Vi), and eigenvalues (  i ) matrices are then calculated  from the standardized observations. The projection of training 
observations on the principal component space Yi is then computed by Eq. (1):  

 Yi 
 S

Train (i) V(i)                   (1)                                                                                                 

The number of principal component which depends on the application is determined and the Dtrain dissimilarity measure is computed 
for training observations using Eq. (2).  

Dtrain     

Y       (2) 
In this paper, the detection threshold that represents the local normal model (LNM) is chosen to be the maximum MaxDiss and 
minimum MinDiss bounds of the dissimilarity vector Dtrain . The LNM parameters are then sent to CH to construct the GNM. 
Different strategies are used to build the GNM at CH; however, the details of such strategies are not the subject of this paper.  

B. Detection stage  
In this stage, each node tests every observation using the GNM built in training stage. Some other parameters which include the 
mean (μ) and standard deviation ( ) parameters, eigenvector (Vi) and eigenvalues ( i) matrices, are also used in this stage. The GNM 
model is composed of (MaxDiss, MinDiss) values calculated globally at CH. Each observation is identified as either normal or 
anomalous by comparing its projection on the space with the detection thresholds specified in the GNM model. The score of 
projecting every new observation on the principal component space is computed using the parameters of the normal profile that 
were obtained from training stage as in Eq. (3):      Yi 

S
Test V           

The measure of dissimilarity (Dtest) for every new observation is computed using Eq. (4).  

2Dtest                           

i 

y 
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At the end, the value of Dtest parameter is compared against the GNM values to classify each observation as normal or anomalous 
using the following criterion:  

 (Dtest MaxDiss)Or(Dtest MinDiss)  Anomalous  

 else Normal 

III. EXPERIMENTAL RESULTS AND EVALUATION 
In this section, the experimental results of the proposed scheme is based on real world data set obtainable and estimated by 
comparing it to a recent existing anomaly detection methd from the literature.  

A.  Datasets   
Grand St. Bernard (GSB) [14] is one of sensor scope project deployment dataset was gathered using WSN deployment.The network 
is formed of 23 sensors that record metrological environmental data that include; (ambient and surface) temperature, and humidity. 
2 clusters were formed in this deployment in which the small cluster has 5 sensors and the big cluster has 18 sensors. The 
observations of the small cluster which have 5 sensors namely, Node25, Node-28, Node-29, Node-31 and Node-32 were used to 
evaluate the proposed model.  In our experiments, the ambient temperature observations at the time period 6am of data recorded 
were used. The observations are labeled using the Mahalanobis    distance measure as used in [15].  

B.  Results and Discussion  
We have tested our proposed model on dataset samples extracted from nodes 25,28,29,31 and 32. The hierarchical WSN structure 
was adopted in which one of the above nodes act as CH that receives the LNM from other nodes in the cluster and constructs the 
GNM that is used by other cluster nodes for detection. The detection rate (DR) and false alarm rates (FPR) which represent 
detection effectiveness are reported in Table 1.  

Table 1. Detection rate and false alarm rate of the proposed model 

  

  

  Nodes      

N25  N28  N29  N31  N32  Average  

DR (%)  100  91  100  89  100  96  
FPR (%)  16  0  2  0  0  7.2  

  
Table 1 reports the results of the proposed scheme for each node. The results show that an average of 96% detection rate was 
achieved by the scheme while 7.2% false positives were produced from misclassification of some normal observations as anomalies. 
A comparison with the statistical temporal based outlier detection (TOD) model proposed in [15] using the same data samples and 
same data labeling approach is shown in Table 2.   

Table 2. A comparison with the TOD model proposed in [15] 

  SW=15  SW=30  SW=48 SW=60  Our model     

DR (%)  82.86  82.86  82.86  82.86   96    
FPR (%)  13.3  13.48  11.67  10.13   7.2    

  
Table 2 reports the results of the TOD model with different smoothing windows values. It is clearly shown that our proposed model 
outperforms the TOD model in terms of detection rate and false positive rate. To evaluate the efficiency of the model, the 
computational complexity and communication overhead are considered.  The computational complexity incurred by our model is 
O(N) where N is the number of observed variable in the phenomenon. This complexity is the computational complexity of CCIPCA 
algorithm. The additional calculations involved in the model are fixed. Since the LNM sent by each node has a fixed size, the 
communication overhead is a function of the number of nodes K in each cluster; therefore, the communication overhead is O(K). 
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For the TOD model, there is no communication overhead as the method is implemented locally but the computation cost is O(c. d 
.p) where d is the number of variables, c is the number of original observations to be modeled, and p is the fitting parameter of the 
AR model used by the TOD.  

IV. CONCLUSION 
This paper introduces the preliminaries and initial experimental results of new distributed anomaly detection scheme for WSNs 
based on the calculation of the dissimilarity between sensor observations in the principal component space.  Experimental results 
and comparison with recent existing work indicate that the scheme is promising in terms of achieving high detection effectiveness 
while efficiently utilizing the limited network resources. Further experiments are needed to investigate the performance of the 
scheme with multivariate data and additional real world datasets.   
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