International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Optimization of Corrugated Sheet Box Size for an Industrial Part - A Case Study

Nilesh V. Kalyankar ${ }^{1,}$ Sachin G. Mahakalkar ${ }^{2}$
${ }^{1}$ M. Tech Student (CAD/CAM), Dept. of Mechanical Engg. YCCE, Nagpur
${ }^{2}$ professor, Dept. of Mechanical Engg YCCE, Nagpur

Abstract

Corrugated box produced in large volume for packaging purpose an application which place high demand on its strength and structural stability of the corrugated sheet box. while studying the different industrial boxes it detect that the deformation of the boxes and strength are weak in load bearing capacity.so in this paper all the deformation and strength will be calculated by Reduce the clearance and change in dimension of actual corrugated sheet box. This is finding out by using optimization procedure for reducing the area and specific weight of corrugated board by using FEA. The present study focused on the optimization of the corrugated sheet box.

Keywords- corrugated sheet box, finite element analysis, packaging, strength, craft paper

I. INTRODUCTION

Corrugated containers are the most important structural application of paperboard. Corrugated cardboard is a paper based on material that consisting of a fluted corrugated sheet and one or two flat linerboard. It is widely used in the manufacture of corrugated cardboard boxes and shipping containers. Corrugated paper replaced the plain paper which was used to keep the shape of the tall, stiff hats worn by gentlemen. It is a machine which is used to crease the corrugated sheet and along that creased edges, the sheet is folded to make the box. Corrugated cardboard pertaining to papers family is one of the most used packing currently. This success is due to the different quality of this material: good protection of the product, minimum cost and can be recycled. A transport package is required to be strong and light weight in order to be effective cost. Furthermore, it should be recycled because of environmental and economic. Corrugated cardboard is according to DIN 55405 cardboard made up of one or more layers of corrugated paper, which is glued to one layer or between several layers of paper or cardboard. Corrugated cardboard is distinguished between single-layer or multi-layer cardboard. Corrugated cardboard is manufactured in a continuous automated process from pre-made paper and cardboard.

II. PROPERTIES OF CORRUGATED SHEET BOX

Tear strength
Burst strength
Fold ability
Stiffness increase as fibre length increase
High pressure steam
High elasticity
TABLE I

Density (kg/m3)	404.5
Poisson's ratio	0.01
Young's modulus (MPa)	7600
Thermal expansion(k dg)	3.75 E-6

III. EXPERIMENTAL AND NUMERICAL ANALYSIS FOR CORRUGATED SHEET BOX

Experiments on Product 1
Product No. 1 (Bpergo Company)
Dimension (mm)
Product dimension:
Length x width x height: $630 \times 600 \times 880$
Current Box Dimension for Product 1

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Outer dimension of box : $670 \times 640 \times 920$
Inner dimension of box : $660 \times 630 \times 910$
Weight of product: 30 kg
Box type: 7 ply

Fig. 1 current box 1
Fig. 2 cad model of box1
Area of the Box:

$$
\begin{gathered}
\mathrm{L}+\mathrm{W}+50-----(1) \\
\mathrm{W}+\mathrm{H}+25----(2) \\
\mathrm{A}=(1) \times(2) \mathrm{mm} 2 \\
670+640+50=1360 \\
640+920+25=1585 \\
\mathrm{~A}=1360 \times 1585 \\
=2155600 \mathrm{~mm}^{2} \\
\text { Area }=2.2 \mathrm{~m}^{2}
\end{gathered}
$$

Weight of the Box:
W=Area x Used paper
Used paper for outer layer is 200 gsm and for inner layer is 120 gsm and for flute paper it is 40% more than that of plane paper as the box is 7 ply so there are 4 plane layers and 3 flute layers are present.

$$
\begin{gathered}
\text { For upper layer } 200 \times 1=200 \mathrm{gsm} \\
\text { Inner layer } 120 \times 3=360 \mathrm{gsm} \\
\text { For flute layer } 168 \times 3=504 \mathrm{gsm} \\
\text { Since the total paper is } 1064 \mathrm{gsm} \\
\text { Weight }=2.2 \times 1064 \\
=2340 \\
\text { Weight of box is } 2.3 \mathrm{~kg}
\end{gathered}
$$

For parts specified by Edge Crush Test (ECT):

Burst test:
The burst test carried out at industry given result as -
Compressor tester applied over square specimen of 7 ply sheet ($1 \times 1 \mathrm{~m}^{2}$), holding sheet in fixed supports at extreme edges. The specimen burst is 474.3 KPa
Numerical result for box1:

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 3 Total Deformation of box 1

Fig. 4 Equivalent Stress of box 1

Design of Boxes on Trial and Error Basis for Box 1
First Consideration:
Outer dimension of box : $660 \times 630 \times 910$
Inner dimension of box : $650 \times 620 \times 900$
Area of the Box:
Area:
$2.09 \mathrm{~m}^{2}$
Weight of the Box:
W=Area x Used paper
Weight $=2.09 \times 1064$
$=2128$
Weight of box is 2.1 kg
For parts specified by Edge Crush Test (ECT):
$\begin{array}{lc}\text { Weight of box in } n & 2.1 * 9.81 \\ ------------------------------------\quad= & =32.7 \mathrm{~N} / \mathrm{M} \\ \text { Width of the box in } \mathrm{m} & 0.630\end{array}$

Fig. 5 Cad model of second consideration box
Numerical Result for first consideration:

Fig. 5 Total deformation of first consideration box
Fig. 6 Equivalent stress of second consideration box

International Journal for Research in Applied Science \& Engineering
Technology (IJRASET)
TABLE II

Dimension (mm)	Area $\left(\mathrm{m}^{2}\right)$	Weight (Kg)	Minimum bursting test(BCT) (kpa)	Minimum edge crush test(ECT) $(\mathrm{N} / \mathrm{m})$	Deformation (m)	Stress (kpa)
$670 \times 640 \times 920$	2.2	2.3	474.3	35.2546	0.00013422	671.79
$660 \times 630 \times 910$	2.09	2.1	474.3	32.7	0.00012088	478.49

Experiments on Product 2
Product no. 2(Mahindra Company)
Dimension (mm)
Product dimension:
Length x width x height: $400 \times 400 \times 250$

Fig. 7 Current box for product 2

Fig. 8 Cad model of actual box 2

Current Box Dimension for Product
Outer dimension of box: $440 \times 440 \times 290$
Inner dimension of box: $430 \times 430 \times 280$
Weight of product: 20 kg
Box type: 7 ply
Area of the Box:

$$
\begin{gathered}
\mathrm{L}+\mathrm{W}+50-----(1) \\
\mathrm{W}+\mathrm{H}+25----(2) \\
\mathrm{A}=(1) \times(2) \mathrm{mm} 2 \\
440+440+50=930 \\
440+290+25=755 \\
\mathrm{~A}=930 \times 755 \\
=702150 \mathrm{~mm} 2 \\
\text { Area }=0.7 \mathrm{~m} 2
\end{gathered}
$$

Weight of the Box:

$$
\text { W=Area } x \text { Used paper }
$$

Used paper for outer layer is 200 gsm and for inner layer is 120 gsm and for flute paper it is 40% more than that of plane paper.as the box is 7 ply so there are 4 plane layer and 3 flutes present.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

For upper layer 200x1=200gsm
Inner layer $120 \times 3=360 \mathrm{gsm}$
For flute layer $168 \times 3=504 \mathrm{gsm}$
Since the total paper is 1064 gsm

$$
\begin{aligned}
\text { Weight } & =0.7 \times 1064 \\
& =744.8
\end{aligned}
$$

Weight of box is 0.744 kg
For parts specified by Edge Crush Test (ECT):
Weight of box in n

$$
\begin{aligned}
& 0.744 \\
&= \text { *-------------------- }=16.5878 \\
& \mathrm{~N} / \mathrm{M}
\end{aligned}
$$

$$
\text { Width of the box in } \mathrm{m} \quad 0.4401
$$

Numerical result of current dimension box 2 :

Fig. 9 Total deformation of actual box 2

Fig10 Equivalent stress of actual box 2

Design of Boxes on Trial and Error Basis for Box 2
First Consideration:
Outer dimension of box : $425 \times 425 \times 275$
Inner dimension of box : $415 \times 415 \times 265$
Area: $\quad 0.65 \mathrm{~m}^{2}$
Weight of the Box:
W=Area x Used paper
Weight $=0.65 \times 1064$
$=691.6$
Weight of box is 0.691 kg
For parts specified by Edge Crush Test (ECT):

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Fig. 11 Cad model of first consideration box2

Numerical Result for first consideration:

Fig. 12 Total deformation of first consideration box 2 Fig. 13 Equivalent stress of first consideration box 2
Optimum Dimension of Corrugated Sheet Box1:
TABLE III

Dimension (mm)	Area $\left(\mathrm{m}^{2}\right)$	Weight (Kg)	Minimum bursting test(BCT) (kpa)	Minimum edge crush test(ECT) $(\mathrm{N} / \mathrm{m})$	Deformation (m)	Stress (kpa)
$440 \times 440 \times 290$	0.7	0.744	474.3	16.5878	0.00006603	515.16
$425 \times 425 \times 275$	0.65	0.691	474.3	15.9268	0.00006839	382.57

IV. CONCLUSIONS

While studying the various industrial boxes it observe that the deformation of the boxes and strength are weak in load bearing capacity.so in this paper all the deformation and strength will be calculate by Reduce the clearance and change in dimension of actual corrugated sheet box. This study shown the optimization of finite element analysis method on the reducing the clearance between product and box dimension. With reducing the dimension deformation occurred in finite element analysis result is very small that is within permissible results.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

From above experiment it concludes that there are maximum stress found on the actual box with respect to product dimension by using FEM and found from compressor tester machine, after reducing the clearance between the product and box dimension we get the difference stress values, to get the optimum size where the stress and deformation are minimum values are found that dimension will get the optimum size of box.

REFERENCES

[1] M. A. Jiménez-Caballero, I. Conde, B. García, E. Liarte "Design of Different Types of Corrugated Board Packages Using Finite Element Tools"C/ María de Luna 7-8, 50007 Zaragoza. SPAIN
[2] Daxner, Flatscher, and Rammerstorfer, F.G. "Optimum Design of Corrugated Board under Buckling Constraints" COEX Seoul, 21 May - 25 May 2007, Korea
[3] Arsalan Jamialahmadi "Experimental and numerical analysis of the dynamic load distribution in a corrugated packaging system" mechanical engineering at blekinge institute of techonology jan 2008-aug 2008
[4] Tomas Nordstrand "Analysis and Testing of Corrugated Board Panels into the Post-buckling Regime" SCA Research, Box 716, 85121 Sundsvall, Sweden
[5] P. Patel, Nordstrand, T. and Carlsson, L.A. "Local Buckling and Collapse of Corrugated Board under Biaxial Stress" Composite Structures, Vol. 39, No. 12, pp. 93-110, 1997.
[6] T. Nordstrand, Blackenfeldt, M. and Renman, M. "A Strength Prediction Method for Corrugated Board Containers" Report TVSM-3065, Div. of Structural Mechanics, Lund University, Sweden, 2003.
[7] Zhiguo Zhang, Tao Qiu, Riheng Song and Yaoyu Sun "Nonlinear Finite Element Analysis of the Fluted Corrugated Sheet in the Corrugated Cardboard" Hindawi Publishing Corporation Advances in Materials Science and Engineering Published 23 July 2014
[8] Adeeb A. Rahman "Adhesive In The Buckling Failure Of Corrugated Fiberboard: A Finite Element Investigation" Department of Civil Engineering Eastern Mediterranean University Vol. 1: 533-539
[9] R. C. McKee, J. W. Gander, and J. R. Wachuta "Flexural stiffness of corrugated board" The Institute of Paper Chemistry, Appleton, Wisconsin

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

