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Abstract:  Secured Hashing Algarithum is used to ensure the integrity and authenticity of data to achieve higher level security. 
These approaches are considered for FPGA based implementation of SHA-3 hash function. .while the performance of folded 
structure just matches the state of art. The design is logically optimized for area efficiency by merging Theta, Rho and pi step, 
Chi step, and Iota step of algorithm into structures which are piplined slice-wise allow to further improve of existing state of art. 
By solving the intra-round dependencies caused by the Rho step mapping. It is possible to reduce area resources and obtain 
shorter data path and the fully iterative and round piplined technique based architectures are composed in terms of frequency, 
throughput per slice improvement and area.  In this paper we are implementing SHA3 1024 variant using Xilinx 14.7 
Keywords: theta, rho, pi, chi, iota. 

I. INTRODUCTION 
The SHA-2 family of cryptography hash functions was designed in 2001 by United States NSA. A remarkable problem with SHA-1 
and SHA-2 that both use the same appliance, called Merkle-Damgard, to the process message text. That mean successful attack on 
SHA-1 becomes a potential risk on SHA-2.Consider SHA-1 for instance. A brute force attack usually takes at least 280 rounds (a 
round is a single cycle of alteration of the interim hash value) to find a collision in a full-round SHA-1.But the, Xiaoyun Wang and 
colleagues used a differential path attack to break a full-round SHA-1, and that took only 269 cycles to complete. That same attack 
was later substantiated by Martin Cochran in August 2008. this attack produced a near-collision later 258.5 cycles. He also 
estimated a changed attack can manage a full-collision after 261 cycles.  the only successful attacks were those against a limited 
round SHA-2 hash. The most in effect attack was against a 46-round SHA-2 and against a 41-round SHA-2 (256-bit variant). It took 
2253.6 cycles to break the 256-bit variant and 2511.5 cycles for the 512-bit variant. The fact remains that, while no successful 
attacks against a full-round SHA-2 have been announced, there is no doubt that attack appliances are being developed in private. 
 

II. SHA-3 
SHA-3 standard, candidate hash functions had to meet four conditions set by NIST. If a candidate failed to meet this conditions, it 
was prohibited: The candidate hash function had to perform well regardless of implementation. Many candidates actually unable to 
meet these requirements. The candidate function to be conservative about security. It should be with stand known attacks, while 
sustaining a large safety factor. It should produce the same four hash sizes as SHA-2 but able to supply longer hash sizes if need be. 
Any weaknesses were found during they were analyzed and addressed through tweaks or through redesign. The SHA-3 competition 
contains 51 candidates function entering the first round for evaluations. Out of those, 14 managed to advance to the second round. 
Round three contain the candidates whittled down to five. And from those five, SHA-3 was declared the winner. SHA-3 is 
recognized as a new Secure Hash Algorithm-3 i.e. SHA-3 [3] announced by NIST. Gilles Van Assche, Guido Bertoni, Michael 
Peeters Keccak is generated from sponge function with Keccak [r, c] members. It is categorized by these additional functions i.e bit 
rate (r) and capacity (c). The 1600-bit state matrix of Keccak composed of 5x5 matrixes of 64-bit words. Initially, the message block 
should undergo the inversion procedure so that last byte should come first and first byte should become last. Every single 
compression function of Keccak composed of 24 rounds and each round is sub-divided into five steps i.e. Theta (Θ), Rho (ρ) and Pi 
(π), Chi (χ), Iota (i) explained below 
 
A. Theta (Θ) Step 
Theta function encompasses three equations that involves bitwise cyclic shift operations and simple XOR. Equation (1) involves 
bitwise XOR operation contain 64-bit lanes for each row where every lane of each and every row is independent for other so parallel 
operations can be applied on this lanes. We are using conventional 64-bit XOR operator in parallel to perform XOR between the 
five lanes of each row contain the state of array ’A’ and results are stored in in-between registers. The parallel XOR operations 
make our design fast and more efficient in terms of performance. Second step (2) of theta will be having one bit left circular rotation 
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which is convoyed by simple rewiring or replacing the bit pattern of each row, then XORing with the previous output lanes. The 
results are stored in an intermediate registers in the form of 5 lanes. These lanes are again XORing with input state matrix A[x, y] to 
form new 5 x 5 state matrix A’[x, y]. All the operations are done on modulo 5.   
                                                                                                                                                                                   C[X] = A[X,0]        
A[X,1]       A[X,2]      A[X,3]       A[X,4]              0 ≤ X ≤ 4 …..(1)  
 
D[X] = C[X -1]       ROT(C[X+1,1])             0 ≤ X ≤ 4 ….(2)  
 
A[X,Y] = A[X,Y]        D[X]                          0 ≤ X , Y ≤ 4 ….(3)  

 
Fig.1 Theta(Θ) step 

B. Rho (ρ) and Pi (π) Step 
The next two steps are Rho (ρ) and Pi (π) can be expressed in equation (4)  compute an auxiliary 5 x 5 array B from the state array 
’A’. The operation of Rho  and Pi take each of the 25 lanes of the state array ’A’, and performing  circular rotation and fixing the 
number of values depending up on the ’x’ and ’y’ co-ordinates 
B[Y,2X+3Y] = (A[X,Y] , r[X,Y]                    0≤X,Y≤4 …….(4) 

C. Chi (χ) Step 
The Chi (χ) step operating  on the lanes, words with 64-bits and manipulating the B array obtained in the previous Rho (ρ) and Pi (π) 
step and interchanges the result in the state array A. We can say that the Chi (χ) step takes the lane at location [x, y] and XOR it with 
the logical AND of the lane at address location of [x+1,y] and the complement at location [x+2,y]. The equation given below 
illustrating the function Chi (χ) 
A[X,Y] = B[X,Y]         ((NOT B[X+1,Y]) AND B[X+2,Y])                          …………(5) 

D. Iota (i) Step 
The Iota step is the simplest step of SHA-3 algorithm. It will just perform the XOR operation and predefined 64-bit constant RC 
given in [3] with in the lane located [0,0] of the new state matrix ’A’. 
A[0,0] = A[0,0]        RC       ……………(6) 
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Fig.2 rho (ρ), pi (π), chi (χ) and iota (i) step. 

III. STATE-OF-THE-ART 
This structures mainly contain folding and the number of pipeline stages. The unfolded structures obtains low throughput, folded 
structures require less resources and low cost and throughput is lower. It is mainly caused due to rounds in step mapping, As such, 
additional logic and clock cycles must be used to solve the dependencies. These results in lower T/A efficiency metrics can 
complicate further optimization. The relevant existing Solutions are either folded lane-wise or slice-wise and the maximum folding 
factor is respectively 64 and 25, denoting the total number of lanes and slices of the state. 
The first folded structure was proposed by Bertonietal.in the SHA-3 Implementation Overview [10], with FF=25 and the state stored 
in the memory with 215 clock cycles per round. Improvements to this structure is Proposed by Kerckhofetal. [11] where the latency 
is reduced to 88 clock cycles per round by more efficient control logic which improves the instruction Parallelism[12].           
 The ρ and θ step-mappings still require additional logic for provision of the necessary input bits. As proposed in [`13], [14], the 
rescheduling of the round function allows for incorporating the ρ step-mapping into addressing of the state in memory Winderickx 
et al. [15] propose a slice-wise structure with FF=64, so that 1 slice of 25 bits is processed in parallel. The first pipelined unfolded 
structure with pipeline registers incorporated in the round function. This optimization achieves a very high frequency, but at a cost 
of high area requirements, resulting in a low T/A efficiency. Additional variations of pipelined structures have also been explored 
[16], [17],[18] and results suggest that one or two pipeline stages in the round function is the optimal trade-off between increased 
throughput and area. As is pointed out by Ioannou et al. [19], pipelining is not relevant for applications where single larger 
messages need to be processed.  

IV. PROPOSED SOLUTION 
Here we are implementing the three a straight-forward implementation, folded structure and piplined structure and comparing the 
three structures by applying 128bit as hash input and checking the hash output message bit as 1024 bit for the three structures and a 
straight forward structure the control logic and the IO buffering. The state contains the registers for storing the 1600 bits of the state 
and the round function contains the 5 step mappings needed to compute SHA-3.and in folded structure we are using Reg A to copy 
the message and reducing the delay and power, increasing the throughput. In pipeline structure using Reg A and Reg B to copy the 
message and increasing throughput and reducing the power and delay compared to folded structure. 
1) Unfolded Structures: The basic structure contains one instance of above-mentioned components, computing one round per 

clock cycle. A multiplexer controlled by a round counter determines whether the state is updated with the result of the round 
function or in the from of input block provided by the wrapper during the absorption phase. The separate IO-buffer allows 
outputting the resulting digest and absorbing a new message in parallel with the processing of a message, as considered in [10]. 
The resulting structure is identical to the straight-forward ones considered in . The pipelined structure is modified from the 
basic structure with an internal pipeline register which separates the θ step mapping from the rest of the round function. This is 
realized by implementing a synchronized input to the ρ step-mapping.  

2) Folded Structure: Towards a more compact SHA-3 structure, folding of the round computation can be considered. In this case 
each round is computed over multiple clock cycles, depending on the folding factor (FF). Targeting a throughput of about 1GBs 
and a moderate folding factor, a FF=4 is proposed. A slice-wise folding structure is considered, resulting in the processing of 16 
slices in each iteration. special care must be taken regarding data dependencies in the θ and ρ step mappings, in order to provide 
the necessary input values for the computation of the slices on each iteration. The ρ step-mapping dependencies can be solved 
by rescheduling the round computation in a similar manner as Proposed With this, the re-scheduled computation 88 
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Fig 3.128bit SHA3 folded structure 

 
Fig 4. 128bit SHA3 unfolded architecture 

 
Fig 5.  128bit SHA3 piplined architecture 
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V. RESULTS 
A.  Simulation Waveforms 

 
Fig 6.Simulation for straight forward 

 
Fig 7.  Simulation for folded structure 

 
Fig 8. Simulation for pipelined 

Table1: Comparison of three straight forward, folded structure and pipe-lined structure 

 

VI. CONCLUSION 
The SHA 3 algorithm provides a good security for the data using the authentication format by generating hash code.  fast running 
speed and can be widely used in digital signatures and 3DES key generation systems and comparing the three structures they are 
straight forward , folded structure and pipelined architecture by comparing this we get to know that pipelined throughput is higher 
and delay is reduced then the folded structure  and folded structure is having more throughput and  less delay then the straight 
forward and final conclusion is pipelined is having higher throughput and reducing the delay. 
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