

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: IV Month of publication: April 2019

DOI: https://doi.org/10.22214/ijraset.2019.4608

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Evaluation of Strength of Plastic Paver Block

Anajwala Parth A¹, Maisuria Dhruvi B², Tankariya Rohan N³, Badlawala Kishan K⁴, Tiwari Avkash A⁵, Gohil Divyangini P⁶

^{1, 2, 3, 4,5}Student, ⁶Associate Professor, Department of Civil Engineering, C.K. Pithawala College of Engineering & Technology, Surat, Gujarat, India

Abstract: Use of concrete paver block is now a day becoming popular, they are used for paving of approaches, paths and parking area and also the pre-engineering building and pavements. In this project, our aim is to study the possibility of using plastic waste as a binding material instead of cement in the manufacturing of paver blocks. At present nearly 56 lakhs tones of plastic waste is produced in India per year. Disposal of plastic waste in an environment is considered to be a big problem due to its very low biodegradability and presence in large quantities. The paver block which is made up by adding plastic help to reduce plastic bag waste and also improve the tensile properties of the paver block. Using this type of the plastic will reduce the cost of the paver blocks.

Paver block paving is aesthetically attractive, functional, and cost effective and requires little maintenance if correctly manufactured and laid. Natural resources are depleting worldwide at the same time the generated wastes from the industry and residential area are increasing substantially.

Keywords: Paver Block, Plastic Waste, Natural River Sand

I. INTRODUCTION

Paver block paving is aesthetically attractive, functional, and cost effective and requires little maintenance if correctly manufactured and laid. Natural resources are depleting worldwide at the same time the generated wastes from the industry and residential area are increasing substantially. Plastic waste used in this work was brought from the surrounding areas. Currently about 56 lakh tonnes of plastic waste dumped in India in a year. The dumped waste pollutes the surrounding environment. As the result it affects both human beings and animals in direct and indirect ways. Hence it is necessary to dispose the plastic waste properly as per the regulations provided by our government. The use of plastic waste instead of cement provides potential environmental as well as economic benefits.

1) Properties of Plastic Wastes : Corrosion resistant, Good Insulation for cold, heat and sound saving energy, It is economical and has a longer life, Maintenance free (such as painting is minimized), Hygienic and clean, Ease of processing / installation, Light weight.

II. METHODOLOGY

- A. The plastic wastes are heated in a metal bucket at a temp of above 150° .
- *B.* As a result, Plastic waste gets melt on heating.
- C. The materials (Sand) are added to it in right proportion at molten state of plastic and well mixed.
- D. The metal mould is cleaned by using waste cloth.
- *E.* Now the mixture is transferred to the mould.
- F. Compact it well in hot condition to reduce internal pores present in it.
- *G.* Then the blocks are allowed to dry for 24 hours so that they harden.
- *H*. After drying the paver block is removed from the moulds and ready for the use.

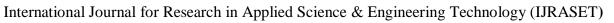


Fig. 1 Manufacturing Process

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com

III. MIX RATIO

Block Type 1 - Six blocks were casted using mix ratio provided below.
Plastic Bags = 1 kg, Sand = 3 kg
Block Type 2 - Six blocks were casted using mix ratio provided below.
Plastic Bags = 1 kg, Sand = 4 kg

IV. RESULT & DISCUSSION

1) Abrasion Value Test: The principle of Los Angeles abrasion test is to find the percentage wear due to relative rubbing action between the paver block sample and steel balls. This value is called Los Angeles abrasion value.

	TABLE I Abrasion Value Test					
Sr.	Weight	Weight of	Loss in	Abrasion	Average	
No.	of	material	weight	value [(W1	abrasion	
	Sample	retained on	due to	- W2) /	value	
	(W1)	1.7 mm	wear (W1	W1] * 100	(%)	
	(gms)	sieve (W2)	- W2)	%		
		(gms)	(gms)			
		R_1 Rati	o Block $(1:3)$	3)		
1	5000	4310	690	13.8		
2	5000	4330	670	13.4	13.66	
3	5000	4310	690	13.8		
R_2 Ratio Block (1 : 4)						
1	5000	4410	590	11.8		
-						
2	5000	4380	620	12.4	12.13	
3	5000	4390	610	12.2		

TABLE I Abrasion Value Test

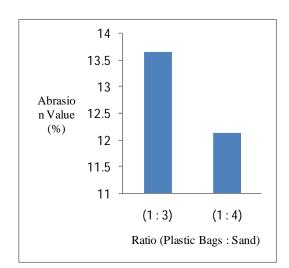


Fig. 2 Abrasion Value (%) V/S Ratio (Plastic Bags : Sand)

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com

2) Compressive Strength Test: This is done to know the compressive strength of the paver blocks. Generally, three paver block specimens of each mix proportion are taken to laboratory for testing and tested one by one. In this test, a paver block specimen is put on compression testing machine and applied pressure till it breaks. The ultimate pressure at which is crushed is taken into account. All three paver block specimens average result is taken as paver block's compressive strength.

in compression strength of Fluster Flutter Brock					
Ratio	Compressive	Average of			
(Plastic Bags :	strength (MPa)	Compressive			
Sand)		strength (MPa)			
	13.87				
(1:3)	14.32	14.13			
	14.19				
	17.09				
(1:4)	16.93	17.02			
	17.05				

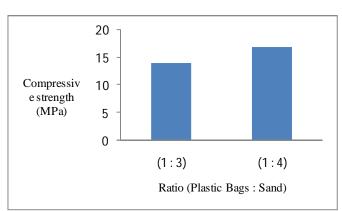


Fig. 3 Compressive Strength (Mpa) V/S Ratio (Plastic Bags : Sand)

3) *Rebound Hammer Test:* When the plunger of rebound hammer is pressed against the surface of the paver block, the spring controlled mass rebounds and the extent of such rebound depends upon the surface hardness of paver block. The surface hardness and therefore the rebound is taken to be related to the compressive strength of the paver block. The rebound is read off along a graduated scale and is designated as the rebound number or rebound index.

TABLE III (Rebound Hammer Test)						
Ratio	Compressive	Rebound Number (N _R)		Average of Rebound		
(Plastic	strength			Number (N _R)		
Bags :	(MPa)			II		
Sand)		Horizontal	Vertical	Horizontal	Vertical	
Build)		Hammer	Hammer	Hammer	Hammer	
		Position	Position	Position	Position	
	13.87	22.30	18.56	22.58	18.92	
(1:3)	14.32	22.84	19.20			
	14.19	22.60	19.00			
	17.09	26.90	22.40			
(1:4)	16.93	26.34	21.93	26.68	22.19	
	17.05	26.80	22.23			

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.88. Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com

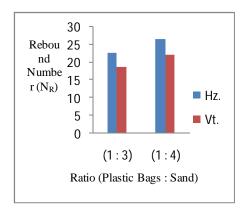


Fig. 4 Rebound Number (Nr) V/S Ratio (Plastic Bags : Sand)

V. COMPARISION

TABLE IV (Comparison between Concrete Paver Block and Plastic Paver Block)

	Abrasion	Compressi	Rebound Number (N _R)		Cost
	Value (%)	ve strength			Per
		(MPa)	Horizontal	Vertical	Block
			Hammer	Hammer	(Rs.)
			Position	Position	
Plastic					
Paver Block	12.13	17.02	26.68	22.19	12 /-
Concrete					
Paver Block					
(Reference	14.70	18.89	26.10	21.84	28 /-
1,3)					
Difference	2.57	1.87	0.58	0.35	16 /-

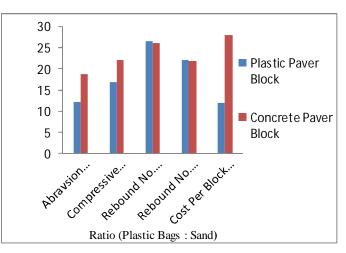


Fig. 5 Plastic Paver Block V/S Concrete Paver Block

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com

VI. CONCLUSION

From the above discussion, we might be conclude that:

- A. Abrasion value of plastic paver block obtained is more than concrete paver block.
- *B.* Though compressive strength obtained is less than concrete paver block it can be used in Garden, Pedestrian path, Cycle way, etc.
- C. By using plastic waste in paver block instead of cement, higher hardness of paver block is obtained.
- D. By using plastic waste in paver block, life of paver block might be increased.
- *E.* The addition of plastic waste might increases the resistance against the wear & Tear.
- F. The plastic paver block is so much economical than concrete paver block.
- G. It can be used in Non-traffic and light traffic roads.

VII. ACKNOWLEDGMENT

We wish to express our heartiest thanks and a sense of gratitude with respect to Dr. Divyangini P. Gohil for their valuable guidance and constant inspiration in preparing this report, without which would not have been able to complete the report. She has been a constant source of encouragement and inspired us in completing the project by offering valuable guidance from time to time. She helped us at all stages of our project and no words can express my deep sense of gratitude to her. Also, we are Thankful to Dr. Priti A. Patel as a H.O.D. of civil engineering department and principal of C.K. Pithawala College of Engineering & Technology, Surat for guiding and providing infrastructure facilities.

REFERENCES

- [1] Ahmad K. Jassim, "Recycling of polyethylene waste to produce plastic cement", Science Direct, Page 635-642, 2016.
- M. Achitra, R. Ambika Rajasree, R. Vijayalakshmi Pandit & V. Saranya, "Recycled plastic and coconut fibre used in concrete paver block", IJESC, Vol. (8) (4), Page 16827-16830, 2018.
- B. Shanmugavalli, "Reuse of plastic waste in paver blocks", International Journal of Engineering Research & Technology (IJERT), Vol. (6) (2), ISSN: 2278-0181, Page 313-315, 2017.
- [4] Sarang Shashikant Pawar & Shubhankar Anant Bujone 2017, "Use of fly ash and plastic in paver block", International Research Journal of Engineering and Technology (IRJET), Vol. (4) (11), ISSN: 2395-0056, Page 1542-1547, 2017.
- [5] Nivetha C., Rubiya M. & Shobana S., "Production of plastic paver block from the solid waste (quarry dust, flyash & pet)", ARPN Journal of Engineering and Applied Sciences, Vol. (11) (2), ISSN 1819-6608, Page 1078-1079, 2016.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)