

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: V Month of publication: May 2019 DOI: https://doi.org/10.22214/ijraset.2019.5070

www.ijraset.com

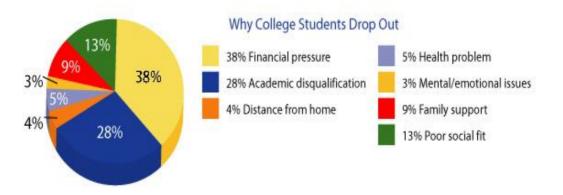
Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Student Performance Analysis using Machine Learning Algorithm

Shivangi Rawat¹, Himanshu Khosla²

^{1, 2}Information Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, India

Abstract: Student Performance Analysis is used to predict the performance of a student based on various factors like marks, attendance, staff rating, ragging, social media usage, extra-curricular and stress factor using the following machine learning algorithms.


a) Naïve Bayes

b) K Nearest Neighbour

A comparative analysis is also performed on both the algorithms in terms of accuracy. Keywords: Performance, Machine Learning, Naïve Bayes, K Nearest Neighbour

I. INTRODUCTION

- A. The Issues Faced By The Educational System Today Are
- 1) Increase in drop-out rates at higher educational level
- 2) Negligence of non-academic factors on the performance of a student.

Survey conducted 4th quater 2007 in a survey of 14,500 students at fifteen colleges by Duck9. Error Margin +/- 2%

Fig. 1: Reasons for college drop out

Machine learning algorithms can be used to predict the future performance of the student and a comparative analysis can be performed on both the algorithm to gauge the efficiency of both the algorithms.

II. OBJECTIVE

The objective of this model is to analyse the performance of a student using machine learning and data mining based on multiple academic and non-academic factors which would enable a student to improve his/her performance.

III.METHODOLOGY

The workflow of the data is as shown in the following diagram which allows to predict the performance of the student. All the fields (marks, attendance, staff opinion, extra-curricular activities participation, ragging, stress) are obtained from the database fed in by the user. Naïve Bayes and KNN algorithms are applied on the data to obtain the results.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue V, May 2019- Available at www.ijraset.com

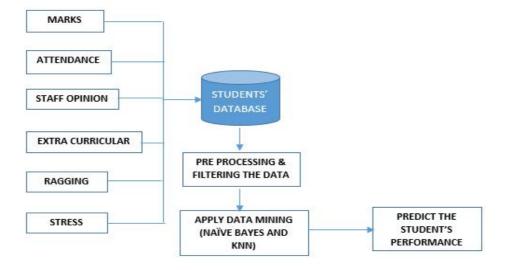


Fig. 2: Workflow

The following figures depicts the user interface which depicts the fields to be entered by the student.

Marks(Grade)	1	Attendance(Percentage)		Staff Remarks(Rating)	
Ragging		Socialmedia Usage	Extra Curr	icular Activities Participation	
Stress					
			Process		
Result					
probability		10 - 20 - 20 1	i i i	9 в в	a a r
		Fig. 3:	User Interface		
		_			
larks(Grade)	9.6	Attendance(Percentage)	90	Staff Remarks(Rating)	3
agging	1	Socialmedia Usage	0 Extra Curr	icular Activities Participation	1
		_			
tress	0				
			Process		
Result	Student Perf	ormance is: Good			
	76 %	т. т.	I I I	r 1 1	1 I I

Fig. 4: Sample Input 1

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue V, May 2019- Available at www.ijraset.com

Output – student (run) 🛞

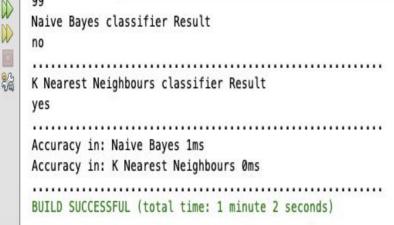
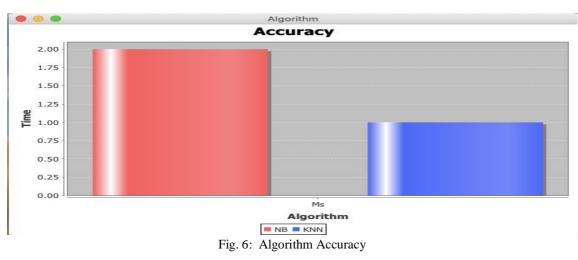



Fig. 5: Sample Output 1

The accuracy of both the algorithms is compared in terms of time taken by both the algorithm to execute and produce results.

IV.CONCLUSION

With education playing a major role in the development of a country, this project would play a major role in the overall development of its students by:

- A. Predicting the performance of the students.
- B. Taking into consideration both academic and non-academic factors.

REFERENCES

- [1] Sharma, P., Vaghela, D., and Parmar, K., "Performance Prediction of Students using Distributed Data Mining," IEEE Sponsored 2nd International Conference on Innovations in Information Embedded and Communication Systems ICIIECS' 15, 2015.
- [2] Osmanbegovic, E., and Suljic, M., "Data mining approach for prediciting student's performance," Economic Review Journal of Economics and Business, Vol. X, Issue 1, 2012.
- [3] Banumathi, A., and Pethalakshmi, A., "A Novel Approach for Upgrading Indian Education by Using Data Mining Techniques," IEEE, DOI: 10.1109/ICTEE.2012.6208603,2012.
- [4] Anoopkumar, M., and Rahman, A., "A Review on Data Mining Techniques and Factor Used in Educational Data Mining to Predict Student Amelioration," IEEE, DOI: 10.1109/SAPIENCE.2016.7684113,2016.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)