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Abstract: In the present study, clay - graphene oxide nano composite catalysts were successfully used for the first time in the 
multi component one pot organic synthesis. The facile development of the hybrid clay - graphene oxide based materials has been 
achieved by a cost effective method without the use of any surfactants. The partial reduction of graphene oxide, upon 
incorporation of clay layers and subsequent heat treatment, is evident from the X-ray diffraction patterns and FTIR spectra of 
the samples. XPS and ²⁷Al and ²⁹Si NMR spectral analyses provide useful information regarding the interaction between clay 
layers and graphene oxide through Si-O-C and Al-O-C bonding. The deconvoluted spectrum of O (1s), Al (2p) and Si (2p) 
indicates the increased availability of acidic functionalities in the hybrid nanocomposite. FESEM and TEM photographs show 
the random distribution of the clay nanoflakes over the graphene oxide sheets and this could provide more of the active sites for 
catalysis. Synthesis of 3, 4- dihydropyrimidinones by the one pot Biginelli reaction was done over the present clay - graphene 
oxide heterogeneous catalysts with high product yield. Short time period of reaction and excellent reusability up to 8 repeated 
cycles under solvent free conditions are the key advantages of the present highly active hybrid nanocomposite clay - graphene 
oxide catalysts over most of the other reported catalysts used for Biginelli reaction. 
Keywords: graphene oxide catalysts, nano composite catalysts 

I. INTRODUCTION 
Multicomponent reaction (MCR), one of the powerful tools for modern synthetic chemists (Weber, 2002), involves coupling of 
more than two starting materials in a one pot reaction condition to form a single complex product containing most of the atoms of 
the staring reagents (Hulme and Gore, 2003; Ugi et al., 1994)[1]. Biginelli reaction is a well- known MCR, which involves the 
synthesis of 3,4- dihydropyrimidinone (DHPM) by one pot condensation reaction of    an aldehyde, ethyl acetoacetate and urea in 
ethanol (Biginelli, 1893; Kappe, 2000). The Biginelli analogues are famed for their biological activities such as antibacterial, 
antimalarial, anticancer, antiviral, anti- tuberculars, and anticonvulsants (Hentrich, 1932; Akhaja and Rava, 2011; Ramachandran et 
al., 2016; Prashantha Kumar et al., 2009). Also, DHPM is the core structure of natural marine alkaloid batzel-ladine which is used 
for the inhibition of the binding of HIV gp-120 to CD4 cell (Snider et al., 1996; Rama Rao et al., 1995)[2]. There are many reports 
on Biginelli reaction over various homogeneous and heteroge- neous catalysts. The catalysts such as  ion  exchange resins (Joseph     
et al., 2006), YbCl3 (Zhang et al., 2009),  triphenylphosphine (Debache et al., 2008), propane phosphonic acid (Zumpe et al., 2007), 
phenylboronic acid (Debache  et  al.,  2006),  sulphamic  acid  (Chen et al., 2007), and sulphated carbon (Moghaddas et al., 2012) 
were used for the synthesis of DHPMs via Biginelli reaction. All these works are valuable; however, many of them encompass 
drawbacks such as the use of hazardous and/or expensive reagents, prolonged reaction time, low yield, tedious workup, and 
requirement of stoichiometric amounts of catalysts; in addition some of the reported procedures also cause envi- ronmental 
pollution. Nowadays, modern green practices give more attention towards the development of environmentally friendly, effi- cient 
and synthetic chemical procedures. In this perspective, in order  to conquer the drawbacks of the above mentioned procedures and to 
accomplish most of the aspects of green and sustainable chemistry,  the use of highly active low cost nonhazardous heterogeneous 
catalysts is essential (Herrmann and Cornils, 1997; Wilson and Clark, 2000)[3]. 
The thinnest material graphene has got much attention from vari- ous researchers because of its extraordinary thermal, electrical and 
mechanical properties (Geim and Novoselov, 2007; Geim and MacDonald, 2007; Novoselov et al., 2004)[4]. Owing to its high 
surface area, graphene is well established as a solid support for various metals and metal oxides and the prepared composite 
materials were effectively used as catalysts (Lu et al., 2009; Bruno and Machadoab, 2012; Liang et al., 2011). Among the various 
methods of preparation of graphene, better yield is obtained by the reduction of graphene oxide (GO) Park and Ruoff, 2009; Tapas 
et al., 2012. Even though the use of GO is exploited in various applications such as supercapacitors, photocatal- ysis, heterogeneous 
catalysis, electrocatalysis, fuel cells and solar cells (Kamat, 2011; Zhou et al., 2010; Seger and Kamat, 2009; Li et al., 2010), the use 
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of GO based materials as catalysts for multicomponent organic transformations is limited in number (Kundu and Basu, 2015; Xiong 
et al., 2014; Sengupta et al., 2014)[5]. Clay minerals are widely used heterogeneous catalysts due to the simplicity in workup, good 
performance, under mild experimental conditions, high product yield with excellent selectivity, low cost, eco-friendly nature and 
natural availability (Nagendrappa, 2002; Varma, 2002). Many modification methods are offered to improve the catalytic 
performance of clays[6]. Hybrid materials of clays with other inorganic/organic materials were also widely applied in catalysis 
(Yadav et al., 2004a; Binitha and Sugunan, 2008; Chen et al., 1995). 
Even before the rediscovery of graphene in 2004 (Geim and Novoselov, 2007), there are reports on graphite like two dimensional 
carbon sheets stacked between the clay layers (Kyotani et al., 1988; Sonobe et al., 1991). Later on, Nethravathi et al. in 2008 had 
reported the preparation of bentonite clay – graphene nanocomposites (Nethravathi et al., 2008a)[7]. Surfactants such as octylamine 
and cetyltrimethylammonium bromide were used in the preparation for the co-stacking of these layered materials. Nethravathy et al. 
had also prepared graphite oxide intercalated anionic clay (nickel zinc hydroxyl salt) using the aqueous colloidal dispersions of 
negatively charged graphite oxide sheets and aminobenzoate intercalated anionic clay layers as precursors (Nethravathi et al., 
2008b). Senthilnathan et al. had recently reported the preparation of nitrogen functionalized graphene/nanoclay hybrid via 
submerged liquid plasma approach (Senthilnathan et al., 2014)[8]. Clay – graphene nanocomposites prepared using sucrose as the 
graphene precursors were effectively used for hydrogen storage by Ruiz-Garcia et al. (2013). Zhang et al. had investigated the use of 
reduced graphene oxide – montmorillonite nanocomposite in hexava- lent chromium removal from aqueous solutions (Zhang et al., 
2015). Ascorbic acid was used as the graphene oxide reductant in that study. In addition, there are some reports on 
clay/graphene/polymer hybrid nanocomposites (Zaman et al., 2014; Longun et al., 2013). Recently, montmorillinite pillared GO was 
used as an adsorbent in the removal of Pb2+ and methylene blue by Liu et al. (2014). Achari et al. reported the synthesis of highly 
water dispersible aminoclay–reduced graphene oxide hybrids by the in situ condensation of aminoclay over graphene oxide (GO) 
followed by reduction using hydrazine hydrate and had studied the biomedical applications of the composite (Achari et al., 2013). 
Behrouz et al. have reported the catalytic synthesis of 3,5- disubstituted isoxazoles in 80–92% yields using Cu/graphene/clay 
nanohybrid materials (Somayeh and Rad, 2015). Cu/graphene/clay nanohybrid was also used for the synthesis of carboacyclic 
nucleosides by 1,3-dipolar cycloaddition (Rad et al., 2015)[9]. 
To the best of our knowledge montmorillonite clay – GO nanocomposite catalyzed CR are not yet reported. In the present work, 
montmorillonite KSF clay (Mont.KSF)  –  GO nanocomposite  is synthesized via a facile procedure and Biginelli reactions have 
been carried out in one pot over these composite materials. We have per- formed an economical method for the production of 
different weight percentage of clay loaded GO nanocomposite catalysts  without the use of any surfactants. The catalytic MCR was 
executed under sustain- able solvent free condition. 

 
II. EXPERIMENTAL SECTION 

A.  Materials 
Graphite flakes and Mont.KSF were purchased from Sigma Aldrich chemicals. Ethyl acetoacetate and methyl acetoacetate were 
procured from MERCK specialties Pvt. Ltd. and Loba Chemie respectively[10]. 4-nitro benzaldehyde and 2-nitrobenzaldehyde were 
purchased from Spectrochem and all other chemicals were obtained from NICE chemicals Pvt. Ltd, India. All reagents were of 
analytical grade and used as such without further purification. The reaction products were characterized by comparing their spectral 
(IR and NMR) and physical data with authentic samples. 
 
B.  Preparation of Graphite Oxide(GO) 
Graphite oxide was prepared by modified Hummers method (Hummers and Offeman, 1958). A mixture of graphite powder (2 g) 
and NaNO3 (1 g) was added into concentrated  H2SO4  (96 ml) kept in an ice bath. KMnO4 (6 g) was added gradually to the above 
mixture with vigorous stirring by maintaining the temperature below 20 °C. Then  the  mixture  was  stirred  at  35 °C  in  a  water  
bath  for  18 h.  The  mixture  turned  into a brownish paste as the reaction commenced. 150 ml of distilled water was added to the 
paste in a drop wise manner while keep- ing the temperature below 50 °C. Thereafter the mixture was diluted with 240 ml of water 
and 5 ml of 30% H2O2 was then added[11]. The colour of the diluted solution was changed to brilliant yellow along with bubbling in 
the solution. After contin- uous stirring for 2 h, the mixture was filtered and washed with 250 ml of 10% HCl, deionized water, and 
ethanol to remove ionic impurities. The resultant solid was dried at room temperature. 
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Fig.1. Preparation of graphite oxide(GO) 

1) Preparation of Mont. KSF clay – GO Nanocomposite: In the preparation of Mont.KSF – GO nanocomposite (with 
clay:GO weight ratio of 10:1), initially graphene oxide solution was prepared by the sonication  of 0.25 g graphite 
oxide in  500 ml water for 30 min. To the swelled Mont.KSF clay solution (2.5 g in 250 ml), GO solution was added 
in a dropwise manner with stirring at 80 °C (addition was done with 4 h duration and the mixture was stirred again 
for one more hour)[12]. The settled clay – GO composite was filtered, washed with dis- tilled water and treated at 
200 °C for 3 h. The same procedure was repeated for the preparation of different Mont.KSF – GO nanocomposites 
having clay:GO weight ratios of 0.5:1, 1:1, 2:1, and 5:1. The catalysts were designated as CG(n:1) where  n indicates 
weight percentage of Mont.KSF with GO. 

 
Fig.2 Formation of Clay-GO nanocomposite 

C.  Preparation of Dihydropyrimidinones 
The typical reaction condition selected for the preparation of DHPM is as follows unless otherwise mentioned. A mixture   of 
aromatic aldehyde (1 mmol), ethyl acetoacetate (1 mmol), urea (1.3 mmol) and catalyst (0.1 g) was heated at 130 °C under stirring  
until the  mixture got  solidified,  where  the stirring became ineffective. Hot ethanol was added to this mixture and the catalyst was 
removed by filtration. Pure product was afforded by crystallization using ethanol. So as to investigate the reusability of CG(10:1) 
nanocomposite for the above reaction, the catalyst after each run was washed several times with hot ethanol and dried at 200 °C for 
2 h[13]. 
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Fig.3. Preparation of dihydropyrimidinones 

D.  Characterization Techniques 
X-ray diffraction (XRD) patterns of the catalyst samples were taken using Rigaku Miniflex 600  X-ray powder diffractometer 
equipped with Cu Ka radiation. FTIR spectra of different systems were recorded using KBr pellets method with Jasco FT/ IR (4100) 
spectrophotometer. XPS analysis was done over AXIS ULTRA X-ray Photoelectron Spectrometer (KRATOS ANALYTICAL) with 
C1s at 284.6 eV as internal standard. Deconvolution of the XPS spectra of each element was done using Gaussian curve fitting. The 
solid state 29Si and 27Al NMR spectra were recorded on ECX400-Jeol 400 MHz High Resolution Multinuclear FT-NMR 
spectrometer.  The  29Si and 27Al NMR were obtained at 79.42, 104.17 and 100.52 MHz respectively. The surface morphologies of 
synthesized nanocomposites were investigated by FESEM (Zeiss SUPRA55 scanning electron microscope at an operating volt- age 
of 3 kV). TEM analysis of representative samples was taken on a Philips CM-12 instrument operated at 100 kV. FESEM/EDAX 
with elemental mapping of CG(10:1) was done on Carl Zeiss Microscopy (Model-UK & SIGMA). Raman spectral analysis was 
performed over WITEC AIFA300RA CONFOCAL RAMAN MICROSCOPE WITH AFM with 532 nm DPPS Laser excitation. 
The purity of Big- inelli compounds was checked by TLC using silica gel and spots were visualized by exposing the dry plates in 
iodine vapours. 1H NMR spectra of the Biginelli products in DMSO were recorded on a BRUKER 500 MHz spectrometer using 
TMS as the internal standard[14]. The melting points of the prod- ucts were recorded on a melting point apparatus in open cap- 
illary tubes and are uncorrected. 
 

III. RESULTS AND DISCUSSION 
Here, clay – GO nanocomposites were successfully prepared by a scalable and cost-effective method without the use of any organic 
modifiers. The schematic representation for the formation of clay – GO nanocomposites is shown in Scheme 1. Mixing of graphene 
oxide with swelled clay and further heat treatment leads to the formation of an uniform composite[15]. The prepared composite 
catalyst systems were characterized using different techniques to investigate the structural charac- teristics of these hybrid materials. 

 
Fig. 4 shows the XRD patterns of different systems. 
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For Mont. KSF, the peak at 8.9° corresponds to diffraction from (100) plane with an interplanar distance of 9.8 A˚(Binitha and 
Sugunan, 2006; Farias et al., 2011). The prepared nanocomposites contain all the peaks of Mont.KSF clay, but with reduced 
intensity. A new peak around 12.3° in the nanocomposites may correspond to the characteristic diffrac- tion from (001) plane of 
GO, indicating the presence of graphene in its oxidized form. Increase in the 2h value when compared with that of bare GO (at 9.9°) 
indicates decrease    in the interlayer distance between graphene oxide sheets, which may be due to the elimination of some of the 
oxidized groups (Tapas et al., 2012; Guo et al., 2009a; Shabnam, 2013) during composite formation. The absence of graphitic peak 
around 26° additionally indicates the increase in the interlayer distance of all the graphite layers as a result of the incorporation of 
oxygen moieties in the sample (Shahriary and Athawale, 2014). The FTIR spectra of different systems are shown in Fig. 2.FTIR 
spectrum of Mont.KSF shows the characteristic vibration bands around 3620 cm 1, 3450 cm—1, 1645 cm—1 and 1045 cm—1 
corresponding to the AOH stretching of lattice hydroxyl groups, AOH stretching from  adsorbed  water, AOH bending and SiAO 
stretching vibrations respectively (Binitha and Sugunan, 2006). In the FTIR spectrum of GO, band centred around 3450 cm—1 
corresponds to AOH stretch- ing vibration. The bands around 1740 cm—1, 1630 cm—1, 1400 cm—1, and 1040 cm—1 indicate the 
presence of C‚O, aro- matic C‚C, hydroxyl CAOH and epoxy CAOAC vibrations respectively (Guo et al., 2009a; Park et al., 2009). 
The vibra- tion bands corresponding to clay as well as GO were retained in the hybrid materials with reduced intensities. The 
intensity of the vibration band around 3620 cm—1 increased with the clay content in the composites as expected. The carbonyl peak 
intensity is reduced in the nanocomposites indicating the reduction or conversion of the >C‚O to other groups. The intensity of 
alcoholic CAOH band at 1400 cm—1 increases with increase in the clay content suggesting the role of clay in the partial reduction 
of carbonyl groups in GO. 

 
Figure  5 FTIR patterns of Mont.KSF, GO and CG(n:1) nanocomposites. 

 
A.  NMR Spectral Analysis 
The 29 Si NMR and 27Al NMR of  montmorillonite  KSF clay and CG(10:1) are shown in         Fig. 4(a) and (b) respectively. Solid 
state NMR spectra of clays provide useful information about the type of coordination of Si and Al in the clay layers. From both the 
spectra, it is clear that the basic resonating peaks are observable in Mont.KSF and CG(10:1) indicating the retention of clay 
framework even after the composite for- mation. The 29Si NMR spectra of Mont.KSF show three res- onating peaks at d values of 
86.2, 91.2 and 107.56, corresponding to Q3 (2Al), Q3 (1Al) and Q3 (0Al) respectively. The Q3 (2Al), Q3 (1Al) and Q3 (0Al) can be 
attributed to the tetrahedrally coordinated silicon bonded to two  Al  atoms, 1  Al atom and 0 Al atom respectively with oxygen as 
rest of    the    coordinated    species.    The    values    at       107.56 and 110.0 ppm correspond to alpha quartz and crystabollite 
silica structure respectively. The 29Si NMR spectra of the CG(10:1) nanocomposite contain an intense peak with a deshielded d 
value  of     89.9  (Q3(1Al))  and  one  broad  peak  with values 105.98 and 107.77 ppm. In CG(10:1), the peak correspond- ing to 
Q3 (2Al) is not distinct and is merged with the Q3 (1Al) peak. 
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In the 27Al NMR spectra, the chemical shift at 5 ppm for Mont.KSF and 6.8 ppm for CG(10:1) was attributable to the octahedrally 
coordinated aluminium (Al(VI)). Similarly for tetrahedrally coordinated aluminium (Al(IV)), the d value is obtained at 74.14 ppm 
with low intensity for  both  Mont.  KSF and CG(10:1), which indicates the presence of low amount of tetrahedrally coordinated 
aluminium in the sam- ples. The small resonance bands on either side of the principal band indicate chemical shift anisotropy 
(Thompson, 1984; Ulicna et al., 2013; Fyfe et al., 1983). 
It is discernible that in both 29Si and 27Al NMR spectra the d values are shifted to low field, which discloses the possibility of 
covalent bonding between the silicate and aluminate layer with GO. This shift of delta values to low field may be attrib- uted to the 
anisotropic deshielding effect of aromatic rings in the GO layers with the clay lamellae (Thompson, 1984). 

 
Figure 6 : (a) 29Si NMR spectra of Mont.KSF and CG(10:1), (b) 27Al NMR spectra of Mont.KSF and CG(10:1). 
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