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I. INTRODUCTION 

Let f be a real valued function which is continuous on  ,0 . Let    dttfxs
x


0

.  We denote the Cesaro mean of  xs  by 

 x .The improper integral  dttf


0

is said to be integrable ,1,1, kC
k

in the sense of Flett[3] if  
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is convergent , where     dttft
x
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1
 usually called a generator of the integral  dttf



0

. 

Let  xp be a non-decreasing real valued function on  ,0 .We define  
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pxpdttpxP
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Then we define the Norlund mean of  xs   by  

                         
       dttstp
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We say that the improper integral  dttf


0

is summable ,1,, kpN
k

  if  

(1.2)
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is convergent .In the special case if we take   1xp for all values of x , then
k

pN ,  

summability reduces to 
k

C 1, summability of improper integrals. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 

                                                                                                                Volume 7 Issue V, May 2019- Available at www.ijraset.com 
     

 ©IJRASET: All Rights are Reserved 2828 

                For any two functions ,gandf it is customary to write     xfOxg  , if there exist K and N , for every   

 
  K
xf
xgNx  , . Clearly the difference between  xs  and its n th weighted mean  ,xp which is called the weighted 

Kronecker identity, is given by the identity  
(1.3)

                                             
      ,xvxxs pp                                                               

where  

                                                              
       duufup

xP
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1
 . 

We note that if we take   ,1xp for all values of x , then we have the following identity ( see [2])        

                                                                           xvxxs p  . 

Since  

                                                                
   

   xv
xP
xpx pp  , 

condition (1.3) can be written as  

(1.4)
                                  

     
   duuv
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x

p 
0

     .                                    

In view of the identity (1.4), the function  xvp  is called the generator function of  xs  . 

Condition (1.1) can also be written as  

(1.5)
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is convergent. It may be noted that for infinite series, an analogous definition was introduced by Orhan [4] . The improper integral 

 dttf


0

is summable 10,1,;,  kkpN
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   , if  
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and summable ,1,10,1,,;,   kkpN
k

  if 

(1.7)
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II. KNOWN RESULTS 

           Dealing with 
knpR, and 

knqR, summability methods, Orhan [4] proved the following theorem: 

1) Theorem 2.1.  The
knpR, ,  1k  summability implies the

knqR, ,  1k  summability provided that  

a)  nn QOnq    ,                                                                                 

b)  nn npOP                                                                                      and 

c)  nn nqOQ    .                                                                             

Subsequently, dealing with summability of improper integrals, Ozgen has established the following theorem: 
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2) Theorem 2.2. [5] Let  xp  and  xq be non-decreasing real valued functions on  ,0 such that as x  

a)     xQOxxq   ,                                                                

b)     xxpOxP    ,               
and                                       
c)     xxqOxQ                                                                                

If  dttf


0
is summable

k
pR, , then it is also summable

k
qR, ,  1k . 

Extending the result of Ozgen, Acharya[1] has established the following result. 

3) Theorem 2.3.  Let  xp  and  xq be non-decreasing real valued functions on  ,0 such that as x  
a)     xQOxxq   ,                                                                         

b)     xxpOxP   ,   

c)     xxqOxQ   ,                                     

d) 
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If  dttf


0
is summable

k
pN ;, , then it is also summable

k
qN ,, ,  1k . 

  However, extending the above result , in the present paper we establish the following theorem : 

III. MAIN RESULT 

1) Theorem 3.1.  Let  xp  and  xq be non-decreasing real valued functions on  ,0 such that as x  
a)     xQOxxq   ,                                                                         

b)     xxpOxP   ,    

c)     xxqOxQ   ,                                     

d) 
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 . 

If  dttf


0
is summable

k
pN  ,;, , then it is also summable

k
qN  ,,, ,  1k . 

IV. PROOF OF THE THEOREM 

Let  xp and  xq be the functions of  pN, and  qN , means of the integral  dttf


0
.Since  dttf



0
is summable 

1,10,1,,;,   kkpN
k , we can write  
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is convergent. Differentiating the equation (1.4) , we have  
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By definition, we obtain  
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Integrating by parts of the first statement, we have  
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In order to complete the proof of the theorem, it is sufficient to show that  
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  as  m , for 3,2,1r   . 

Using conditions (7.3.1.1) and (7.3.1.2), we have  
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by virtue of the hypotheses of theorem 3.1. 
Applying Holder’s inequality with 1k , we get  
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                                     1O  as  m , 
by virtue of the hypotheses of theorem 7.3.1. 
Finally, again by Holder’s inequality with 1k , we have  
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by virtue of the hypotheses of theorem 3.1. 
This completes the proof of the theorem. 
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