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Abstract: In this paper, we introduce the concept of |N, p;o, /,t|k ,K > 1 summability of improper integrals and by this definition
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l. INTRODUCTION

X

Let f be areal valued function which is continuous on [0, oo). Let S(X) = I f(t)jt . We denote the Cesaro mean of S(X) by
0

G(X).The improper integral I f (t)jt is said to be integrable |C,ZI.|k ,K >1,in the sense of Flett[3] if
0

o - K
(1.1) ka’1|a’(x)|kdx - I@dx
0 0

is convergent , where V(X) = %It f (t)jt usually called a generator of the integral I f (t)jt .
0 0

Let p(x) be a non-decreasing real valued function on [0, oo) .We define

= [ p(t)dt, p(x) = 0, p(0) = 0.
0
Then we define the Norlund mean of S(X) by

1X
=— t t.
P(le)s (t)d

We say that the improper integral I f(t)jt is summable |N, p|k, k>1, if
0

(1.2) Tx“‘o’p(x)'k dx
0

is convergent .In the special case if we take p(X) = 1for all values of X, then | N, p|k

summability reduces to |C,qu summability of improper integrals.
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For any two functions f and g, it is customary to write g(X) = O(f (X)) if there exist K and N , for every

g(x)
f(x)
Kronecker identity, is given by the identity

(1.3) s(x)-o,(x)=v,(x),

where

< K . Clearly the difference between S(X) and its N th weighted mean Gp(X), which is called the weighted

x> N,

v, (x)= %T p(u)f (u)du .

We note that if we take p(X) =1, for all values of X , then we have the following identity ( see [2])

Since

condition (1.3) can be written as

(1.4) s(x)=vp(x)+jxmv (u)du

In view of the identity (1.4), the function Vo (X) is called the generator function of S(X) .

Condition (1.1) can also be written as

k
) X k
(1.5) j x 1 p(x) ‘vp(x)‘ dx
o (PK)
is convergent. It may be noted that for infinite series, an analogous definition was introduced by Orhan [4] . The improper integral

00

If(t)jt is summable |N, p;5|k,k >1,0<k<1 ,if

0

(1.6) j ‘**“[ J‘v )‘kdx

and summable |N, p;5,/,t|k,k21, 0<k<l,u>1, if

(1.7) j: x’“‘**“{%}k‘vp(x)‘k dx

1. KNOWN RESULTS
Dealing with |R, pn|k and |R, a, |k summability methods, Orhan [4] proved the following theorem:

1) Theorem 2.1. The|R, pn|k ,(k > 1) summability implies the|R, qn|k , (k > 1) summability provided that
a) ng,=0(Q,) .

b) P, =0(np,) and

¢ Q,=0(ng,) .

Subsequently, dealing with summability of improper integrals, Ozgen has established the following theorem:
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2) Theorem 2.2. [5] Let p(x) and q(x)be non-decreasing real valued functions on [0,oo)such thatas X — o0
5 *a(x)=0Q(x)
b) P(x)=0(xp(x)) .

and
o) Q(x)=0(xq(x))
If J.Ow f (t)jt is summable|R, p|k , then it is also summable|R, q|k , (k > 1)_

Extending the result of Ozgen, Acharya[1] has established the following result.
3) Theorem 2.3. Let p(x) and q(x)be non-decreasing real valued functions on [0,oo)such that as X — o0

a) xq(x)=0(Q(x)).
b) P(x)= O(Xp(X))
o)

o O-Olal )
d) jm )
ftw\vp(t)\kdt: oQ)

and

If J.Ow f (t)jt is summable| N, p;5|k , then it is also summable|N , q,5|k , (k > 1)_

However, extending the above result , in the present paper we establish the following theorem :

1. MAIN RESULT
1) Theorem 3.1. Let p(x) and q(x)be non-decreasing real valued functions on [0,oo)such that as X — o0

a) xq(x)=0(Q(x)).
b) P(x)=O(xp(x)) ,
5 Q)=0ba(x)

m Xﬂ(5k+k*1)fk+lq(x) tﬂ(fﬂﬂkfl)fkﬂ
dx = O] ————
d) It Qz(x) X Q(t)

If J.Ow f(t)jt is summable|N, p;5,/,t|k , then it is also summable|N,q,5,/,t|k,(k 21)_

V. PROOF OF THE THEOREM
Let Gp(X) and O, (X) be the functions of (N1 p) and (N1CI)means of the integral J.Ow t)jt .Since J. (t)jt is summable

IN,p;& pf, k21, 0< K <1, 1121 we can write
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[ 2

is convergent. Differentiating the equation (1.4) , we have

f ()= v, (x)+ % %)

By definition, we obtain
<>=%r gttt =%r< Q(x)- Q)f (1)t

and

ol(x)= qz(z()z) J'OXQ(t)f (t)dt

Q
_a(x) LR,
—QZ(X)JOQa{ 0 2,0
0t -+ L [ Q) B

Integrating by parts of the flrst statement, we have
ey 409 (%) o P0)
74 (8)= e QLMo 0 [ ot )it |+ B T Q) v, e
a(x) a(x) o) P _q(x)
Q*(x) Vp(x) + Q2(x) jo Q(t) P(t)Vp(t)dt '[
=0,,(X)+0,,(X)+0;5(%), say.
In order to complete the proof of the theorem, it is sufficient to show that

m ke k
'[0 XH(& k 1)‘Gq,r(xj dx = O(l) as M—> 0 for I = 12,3 .
Using conditions (7.3.1.1) and (7.3.1.2), we have

J-Om xﬂ(&ukfl)‘aq'l (XXK dx = J»Om XH(&Jrk—l)

q—X)V X k
Q(x) o)

k
pu(Sk+k-1) (X
ot o1
k

=0(1) jo x 1Ak 1[22)(; ‘vp( )‘ dx

dx

X
=0(1) '[0 (o) o;(x)‘kdx

=0(1) ,as M0
by virtue of the hypotheses of theorem 3.1.

Applying Holder’s inequality with k>1 we get

Jo“”xm1>\oq,2<x1kdx=0<1>me"(“”[gz(xx)ﬂk[
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S R
=o@ﬂTWW;¥$K@£f SEJ% { gj\w dq[}%jﬂqﬁqu}x
ot 2 b of [ o
- o) tﬂwnﬂQ_‘;)) 243 0] a
—o() tu(mm)[%?pvp(t)‘kdt

by virtue of the hypotheses of theorem 7.3.1.
Finally, again by Holder’s inequality with k>1 wehave

[ o () dx =0 " M[ Q((X))Jk(ﬁq(t)\vp(t)rdt)kdx

Q’
—oQ)[" x”“‘*(;:;*; qx )( [att)y, ) dtj [% j*q(t)dtJ“dx

X” (Ok+k—1)-k+1

—o@["q(t)v, )] dt[" Q(X)q(x)dx

m t #(S+k=1)k+1 K
tQ—(t)q(t)\vp(tX dt

0(1)Tt”(‘*k*“*k v, (t)|k dt
0

=o@)f

=0(1) as m— oo ’
by virtue of the hypotheses of theorem 3.1.
This completes the proof of the theorem.
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