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I. INTRODUCTION 

Let f be a real valued function which is continuous on  ,0 . Let    dttfxs
x


0

.  We denote the Cesaro mean of  xs  by 

 x .The improper integral  dttf


0

is said to be integrable ,1,1, kC
k

in the sense of Flett[3] if  

(1.1)                      
                    

   
dx

x
x

dxxx
k

kk 


 
00

1 
                                                                              

is convergent , where     dttft
x

xv 



0

1
 usually called a generator of the integral  dttf



0

. 

Let  xp be a non-decreasing real valued function on  ,0 .We define  

                                               
   

x

pxpdttpxP
0

0)0(,0)(,)( . 

Then we define the Norlund mean of  xs   by  

                         
       dttstp

xP
x

x

p 
0

1
 . 

We say that the improper integral  dttf


0

is summable ,1,, kpN
k

  if  

(1.2)
                                                

  dxxx
k

p
k  




0

1                                                                       

is convergent .In the special case if we take   1xp for all values of x , then
k

pN ,  

summability reduces to 
k

C 1, summability of improper integrals. 
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                For any two functions ,gandf it is customary to write     xfOxg  , if there exist K and N , for every   

 
  K
xf
xgNx  , . Clearly the difference between  xs  and its n th weighted mean  ,xp which is called the weighted 

Kronecker identity, is given by the identity  
(1.3)

                                             
      ,xvxxs pp                                                               

where  

                                                              
       duufup

xP
xv p 




0

1
 . 

We note that if we take   ,1xp for all values of x , then we have the following identity ( see [2])        

                                                                           xvxxs p  . 

Since  

                                                                
   

   xv
xP
xpx pp  , 

condition (1.3) can be written as  

(1.4)
                                  

     
   duuv
uP
upxvxs p

x

p 
0

     .                                    

In view of the identity (1.4), the function  xvp  is called the generator function of  xs  . 

Condition (1.1) can also be written as  

(1.5)
                                    

 
    dxxv
xP
xpx

k

p

k
k

 








0

1                                        

is convergent. It may be noted that for infinite series, an analogous definition was introduced by Orhan [4] . The improper integral 

 dttf


0

is summable 10,1,;,  kkpN
k

   , if  

(1.6)
                                    

 
    dxxv
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k
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kk
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



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


0

1                                        

and summable ,1,10,1,,;,   kkpN
k

  if 

(1.7)
                                    

   
    dxxv
xP
xpx

k

p

k
kk

 








0

1    .                                    

II. KNOWN RESULTS 

           Dealing with 
knpR, and 

knqR, summability methods, Orhan [4] proved the following theorem: 

1) Theorem 2.1.  The
knpR, ,  1k  summability implies the

knqR, ,  1k  summability provided that  

a)  nn QOnq    ,                                                                                 

b)  nn npOP                                                                                      and 

c)  nn nqOQ    .                                                                             

Subsequently, dealing with summability of improper integrals, Ozgen has established the following theorem: 
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2) Theorem 2.2. [5] Let  xp  and  xq be non-decreasing real valued functions on  ,0 such that as x  

a)     xQOxxq   ,                                                                

b)     xxpOxP    ,               
and                                       
c)     xxqOxQ                                                                                

If  dttf


0
is summable

k
pR, , then it is also summable

k
qR, ,  1k . 

Extending the result of Ozgen, Acharya[1] has established the following result. 

3) Theorem 2.3.  Let  xp  and  xq be non-decreasing real valued functions on  ,0 such that as x  
a)     xQOxxq   ,                                                                         

b)     xxpOxP   ,   

c)     xxqOxQ   ,                                     

d) 
 
   









 tQ

tOdx
xQ
xqx km

t

k 

2      

and                                                            

e) 
   1

0

1 Odttt
m

k

p
k   

 . 

If  dttf


0
is summable

k
pN ;, , then it is also summable

k
qN ,, ,  1k . 

  However, extending the above result , in the present paper we establish the following theorem : 

III. MAIN RESULT 

1) Theorem 3.1.  Let  xp  and  xq be non-decreasing real valued functions on  ,0 such that as x  
a)     xQOxxq   ,                                                                         

b)     xxpOxP   ,    

c)     xxqOxQ   ,                                     

d) 
   

 

 

  
















tQ
tOdx

xQ
xqx

kkk
m

t

kkk 11

2

11 

     

and                                                            

e) 

     1
0

1

Odttt
m

k

p

kkk







 . 

If  dttf


0
is summable

k
pN  ,;, , then it is also summable

k
qN  ,,, ,  1k . 

IV. PROOF OF THE THEOREM 

Let  xp and  xq be the functions of  pN, and  qN , means of the integral  dttf


0
.Since  dttf



0
is summable 

1,10,1,,;,   kkpN
k , we can write  
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   
    dxxv
xP
xpx

k

p

k
kk










 

0

1
 

is convergent. Differentiating the equation (1.4) , we have  

                                                   
     

   xv
xP
xpxvxf pp    . 

By definition, we obtain  

                          
                dttftQxQ

xQ
dttstq

xQ
x

xx

q  
00

11  

and  

                          
   

     dttftQ
xQ

xqx
x

q 
02

 

                                    

 
       

    dttv
tP
tptvtQ

xQ
xq

pp

x









 02

 

                                    

 
       

     
   dttv
tP
tptQ

xQ
xqdttvtQ

xQ
xq

p

x

p

x

 
0202  

Integrating by parts of the first statement, we have  

                         
   

           
     

    



 

x

p

x

ppq dttv
tP
tptQ

xQ
xqdttvtqxvxQ

xQ
xqx

0202  

                                    
 
 xQ
xq

2  xvp   
 xQ
xq

2    
    

x

p dttv
tP
tptQ

0

 
 xQ
xq

2    
x

p dttvtq
0

 

                                    
     xxx qqq 3,2,1,   ,  say. 

In order to complete the proof of the theorem, it is sufficient to show that  

                        
     1,0

1 Odxxx
k

rq

m kk   
  as  m , for 3,2,1r   . 

Using conditions (7.3.1.1) and (7.3.1.2), we have  

      
      dxxx

k

q

m kk
1,0

1     
    dxxv
xQ
xqx

k

p

m kk 

0

1  

                                             
    dxxv
xQ
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k

p

k
m kk









 

0

1  

                                    1O    
    dxxv
xP
xpx

k

p

k
m kk









 

0

1  

                                     1O     dxxx
k

p

m kk   

0

1  

                                     1O   , as  m   , 
by virtue of the hypotheses of theorem 3.1. 
Applying Holder’s inequality with 1k , we get  

      

         
 

   
    dxdttv
tP
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xQ

xqxOdxxx
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m kkk

q
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
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

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








  

00 2
1

2,0

1 1    
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                                           
   
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
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   

   
  dx
xQ
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                                     1O  as  m , 
by virtue of the hypotheses of theorem 7.3.1. 
Finally, again by Holder’s inequality with 1k , we have  
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
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00 23,0
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1
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k
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                                         
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                                    
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p

kkk



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11

1
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      

m
k

p
kkk dtttO

0

11 
 

                                    1O   as m , 
by virtue of the hypotheses of theorem 3.1. 
This completes the proof of the theorem. 
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