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Abstract: Minimally invasive surgery refers to an array of techniques that aim to minimize the incisions made in the body during 
a surgical operation. There has been a growing interest in the field owing to numerous benefits like faster recovery times of 
patient, lower blood loss, less painful post-surgical period etc. We present a framework incorporating an n-link robotic chain 
with an embedded sensor at the end effector which provides feedback to the surgeon and facilitates correction of digressions 
from intended path. A numerical validation has been presented which takes the piezometric signal from the end effector and 
provides real-time corrective signals to minimize tremors and digressions of end effector. 
Keywords: Planar serial type robot, Lagrangian Mechanics, Medical robot, Minimally Invasive Surgery, Minimally Invasive 
Procedures 

I. INTRODUCTION 
Surgery involves making incisions in the body to gain access to the interior organs. However, it causes immense pain, discomfort to 
the patient and takes a long time for the wounds to heal. There is also the risk of infections and complications if the wounds are not 
properly taken care of. “Minimally Invasive Surgery” (MIS), also known as “Minimally Invasive Procedure” is a term coined by 
John E.A. Wickham in 1984.  MIS refers to the surgeries carried out using various techniques to reduce the incisions and wounds 
made to reach to the surgical site in the body. 
In lieu of the above, there is a huge interest and necessity to come up with novel techniques which reduce or eliminate surgical 
incisions. Advancements in computational power, recent encouraging results in the field of Micro and Nano devices has breathed 
fresh life into this field as outlined in [1].   
While performing a surgery. the surgeons rely heavily on haptic feedback and dexterity. In this work we propose a simple model of 
incorporating an n-link robotic chain with a sensor embedded in the end effector. The sensor feeds the workstation with the spatial 
location data, the piezometric response i.e. forces due to the tissue around the link. Effectively, the surgeon is thus provided with 
spatial awareness and haptic feedback without actually reaching the site of surgery. 
The model we present incorporates a control system which gives a feedback of corrective motion to the end effector. We 
numerically validate the robustness of our model. A discussion on forward and inverse kinematics involved is included detailing 
how the desired motion of the end effector is achieved. 

 

Fig. 1 Plant Schematic 

II. PLANT DESCRIPTION AND DYNAMICS 
In this section, we shall derive the governing equations of motion of our system. Then, Jacobian is found to obtain transformation 
from Task Space to Configuration Space and vice-versa. 

A. Plant Description and Dynamics 
Consider a two-link manipulator as shown in Fig. 1. 

We shall use the Lagrangian Formulation [2,4] to obtain the equations of motion. 
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B. Governing Equations 
We will derive the governing equations using Lagrangian Mechanics. 
Friction and other dissipation mechanisms are ignored. 
End-effector coordinates: (x2, y2) 

Generalised Coordinates: 푞 =  
푞
푞 =   휃휃  

1) Angular displacement (rotation about z-axis) is 
휃 =   휃  
휃 =  휃 +  휃  
푥 = 푙 cos(휃 ) 
푦 = 푙 sin(휃 ) 
푥 = 푙 cos(휃 ) + 푙 cos(휃 +  휃 ) 
푦 = 푙 sin(휃 ) + 푙 sin(휃 +  휃 ) 
푥 ̇ =  −푙 sin(θ )휃̇  
푦̇ =  푙 cos(θ )휃̇  
푥 ̇ =  −푙 sin(θ )휃  ̇ − 푙 sin(θ +  휃 ) 휃̇ + 휃̇  
푦 ̇ =  푙 cos(휃 )휃  ̇ + 푙 cos(θ +  휃 ) (휃̇ + 휃̇ ) 
푥 ̇ =  푙 sin (θ )휃 ̇  
푦 ̇ =  푙 cos (θ )휃 ̇  

푥 ̇ =  푙 sin (θ )휃  ̇ +  푙 sin (θ +  휃 ) 휃̇ + 휃̇ + 2푙 푙  sin휃  sin(휃 +  휃 )휃  ̇ 휃̇ + 휃̇  

푦 ̇ =  푙 cos (θ )휃  ̇ +  푙 cos (θ +  휃 ) 휃̇ + 휃̇ + 2푙 푙  cos 휃  cos(휃 +  휃 )휃  ̇ 휃̇ +  휃̇  

푥 ̇ + 푦 ̇ =  푙 휃  ̇ [sin (θ ) + cos (θ )] =  푙 θ ̇  

푥 ̇ +  푦 ̇ =  푙 휃  ̇ +  푙 휃̇ + 휃̇ + 2푙 푙  휃̇ 휃̇ +  휃̇ [sin휃  sin(휃 +  휃 )  +  cos 휃  cos(휃 +  휃 )] 

=  푙 휃  ̇ +  푙 휃̇ + 휃̇ + 2푙 푙  휃̇ 휃̇ +  휃̇ cos휃 Type equation here. 
2) Kinetic Energy of the system 

퐾퐸 =
1
2푚  푥 ̇ +  

1
2푚  푦̇ +  

1
2푚  푥 ̇ +  

1
2푚  푦 ̇  

=
1
2

(푚 + 푚 )푙 휃̇ +  
1
2푚 푙 휃̇ +  

1
2푚 푙 휃̇ +푚 푙 휃̇ 휃̇ +푚 푙 푙 푐표푠휃 휃̇ 휃̇ +  휃̇ 푐표푠휃    

 
3) Potential Energy of the system 

푃퐸 = 푚 푔푙 푠푖푛휃 +푚 푔[푙 푠푖푛휃 + 푙 푠푖푛(휃 + 휃 )] 
 
Lagrangian, 퐿 = 퐾퐸 − 푃퐸 

퐿 =  
1
2

(푚 +푚 )푙 휃̇ +  
1
2푚 푙 휃̇ + 

1
2푚 푙 휃̇ + 푚 푙 휃̇ 휃̇ +푚 푙 푙 푐표푠휃 휃̇ 휃̇ +  휃̇ 푐표푠휃  −  푚 푔푙 푠푖푛휃

− 푚 푔[푙 푠푖푛휃 + 푙 푠푖푛(휃 + 휃 )] 
4) Our dynamics equations are given by 

푑
푑푡

휕퐿
휕휃̇

−
휕퐿
휕휃 = 퐹    ; 푖 = 1,2 

 
 
5) We thus obtain dynamic equations after simplification as 

퐹 = [(푚 +푚 )푙 + 푚 푙 + 2푚 푙 푙 푐표푠]휃̈ + [푚 푙 +푚 푙 푙 푐표푠휃 ]휃̈

− 푚 푙 푙 sin휃 2 휃̇ 휃̇ +  휃 ̇ + (푚 +푚 )푔푙 cos휃 + 푚 푔푙 cos(휃 + 휃 ) 
퐹 = [푚 푙 +푚 푙 푙 cos휃 ] 휃̈ + [푚 푙 ]휃̈ + 푚 푙 푙 sin휃 휃 ̇ +푚 푔푙 cos (휃 +  휃 ) 
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6) We can express it in matrix form as 
푀푞̈ + 퐶푞̇ +퐾푞 = 퐹 

where 

푀 =  
(푚 + 푚 )푙 +푚 푙 + 2푚 푙 푙 푐표푠휃 푚 푙 + 푚 푙 푙 푐표푠휃

푚 푙 + 푚_2푙 푙 푐표푠휃 푚 푙
 

퐾푞 =  
(푚 +푚 )푔푙 푐표푠휃 + 푚 푔푙 cos (휃 +  휃 )

푚 푔푙 cos(휃 + 휃 )  

퐹 =  
퐹
퐹  

푞 =  
푞
푞 =  휃휃  

푞̇ =  푞 ̇푞 ̇ =  휃
̇
휃̇

 

푞̈ =  푞 ̈푞 ̈ =  휃
̈
휃̈

Type equation here. 

C. Velocities and Jacobian 
1) From Fig 1, we have: 
푥 = 푙 cos(휃 ) 
푦 = 푙 sin(휃 ) 
푥 = 푙 cos(휃 ) + 푙 cos(휃 +  휃 ) 
푦 = 푙 sin(휃 ) + 푙 sin(휃 +  휃 ) 

푣 ≔  
푣
푣
휔

=  
푥 ̇
푦̇
휃̇

=
푑
푑푡

푥
푦
휃

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃

휕휃
휕휃

휕휃
휕휃 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

휃̇
휃̇

 

푣 ≔  
푣
푣
휔

=  
푥 ̇
푦̇
휃̇

=
푑
푑푡

푥
푦
휃

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃

휕휃
휕휃

휕휃
휕휃 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

휃̇
휃̇

 

2) Linear Velocity part of the Jacobian, 퐽  is 

퐽 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃

휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

3) Angular Velocity part of the Jacobian, 퐽  is 

퐽 =  

⎣
⎢
⎢
⎡
휕휃
휕휃

휕휃
휕휃

휕휃
휕휃

휕휃
휕휃 ⎦

⎥
⎥
⎤
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4) Full Jacobian for end-effector, 퐽 is 

퐽 =  퐽
퐽 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃

휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃

휕휃
휕휃

휕휃
휕휃

휕휃
휕휃

휕휃
휕휃 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

We will now obtain the end-effector velocities as a function of joint velocities, and vice-versa. We shall refer to the end-effector as 
‘ee’ in further discussions for convenience. 

푣
푣 = 퐽 휃̇

휃̇
 

5) Where 퐽 is the end-effector Jacobian and is given by 

퐽 =  

⎣
⎢
⎢
⎡
휕푥
휕휃

휕푥
휕휃

휕푦
휕휃

휕푦
휕휃 ⎦

⎥
⎥
⎤
 

=  −푙 sin휃 − 푙 cos (휃 + 휃 ) −푙 sin (휃 + 휃 )
푙 푐표푠휃 + 푙 cos (휃 +  휃 ) 푙 cos (휃 +  휃 )  

 
6) Joint velocities as a function of the end-effector velocities can be expressed as 

휃̇
휃̇

= 퐽
푣
푣  

Where 퐽 is the inverse of the end-effector Jacobian 퐽 , provided the inverse exists. We shall not include a discussion on 
singularities i.e., the cases when det(퐽 ) = 0. 
 

D. Inverse Kinematics of the Plant 
We have, 

푥 = 푙 cos휃 + 푙 cos(휃 + 휃 ) 
푦 = 푙 푠푖푛휃 + 푙 sin (휃 +  휃 ) 

Thus, 
푥 + 푦 = 푙 cos 휃 + 푙 cos (휃 +  휃 ) + 2푙 푙 cos휃  cos(휃 + 휃 ) + 푙 sin 휃 + 푙 sin (휃 +  휃 ) + 2푙 푙 푠푖푛휃 sin (휃 + 휃 ) 

= 푙 + 푙 + 2푙 푙 [푠푖푛휃 sin(휃 + 휃 ) + 푐표푠휃 cos (휃 + 휃 )] 
 
 
1) Using the well-known trigonometric identity cos푎 cos 푏 + sin푎 sin푏 = cos(푎 − 푏), we have 

푥 + 푦 = 푙 + 푙 + 2푙 푙 cos휃  

⇒ 푞 =  휃 = cos
푥 + 푦 − 푙 − 푙

2푙 푙   

 
 
We must find similar expression for 휃  in terms of (푥 ,푦 , 푙 , 푙 ) to complete the inverse kinematics. 
For that, consider Fig 1. 
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2) We can see that 

tan푝 =
푦
푥  

⇒ 푝 = tan
푦
푥  

 
Consider Fig.1 again. 
We have: 

cos푝 =
푙 + 푙 cos휃

푥 + 푦
 

=
푙 + 푙 푥 + 푦 − 푙 − 푙

2 푙 푙
푥 + 푦

 

=
푙 − 푙 + 푥 + 푦

2푙 푥 + 푦
 

=
푥 + 푦  + 푙 − 푙

2푙 푥 + 푦
 

⇒ 푝 = cos
푥 + 푦  + 푙 − 푙

2푙 푥 + 푦
 

We have two cases for 푞  (=  휃 ) 
a) Case 1: 휃 > 0 푖. 푒. , 푞 > 0  
Consider Fig. 2: 

휃 = 푞 = 푝 − 푝  
b) Case 2: 휃 < 0 푖푒. , 푞 < 0   
Consider Fig.3: 

휃 = 푞 = 푝 + 푝  
Consolidating the above two cases, we have: 

푞 =  푝 − 푝2;     푓표푟 푞 > 0
푝 + 푝 ;      푓표푟 푞 < 0 

 
Fig. 2 Link Orientation: Case 1 

 
Fig. 3: Link Orientation: Case 2 
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III. NUMERICAL VALIDATION 
In the following section shall discuss the validation of the dynamics discussed in the earlier sections using a controller model 
described in [5]. 
The masses and geometry of the medical robot vary widely depending on the type of medical procedure being carried out, robot 
type and other factors. To check our model, we take hint form [3], and choose following values for the parameters involved. 
Mass of the links: 푚 = 푚 = 0.1푘푔 
Length of the links: 푙 = 푙 = 0.05푚 

 
Fig. 4: Control Input to the link. 

IV. RESULTS AND DISCUSSION 
In this section we shall consider our plant and choose an appropriate controller model for the same. We shall discuss the results of 
numerical simulation using the chosen controller model. 
To show the effectiveness of applied methodology, we have applied the controller model discussed in [5]. 
Fig. 4 shows the control input to the links. This can be thought of as torque input to actuators located at the joints as a function of 
time. We can see from Fig. 4 that control inputs for both the links is smooth and there are no sudden changes in the given input 
signal. 
To validate our framework, we have done the following.  
First, we have defined a given path/curve. In our case, we have chosen a circle. In principle, it can be any smooth and continuous 
curve in space. Ideally, we wish/expect our tool point to trace the given path. 
We start our simulation with end-effector located at a certain position in space. We intentionally keep the initial position of tool 
point away from the desired path. This helps us check the following two things: 
1) Is the tool point coming on to the desired path? 
2) If it does, how fast and smooth is the transition? 

We know that the circle can be described in Cartesian Coordinate system as curve 퐶 such that: 
C: (푥 − 푥 ) +  (푥 − 푥 ) = 푎  

 
where a is the radius of the circle and (푥 ,푥 ) are the coordinates of the centre of the circle. 
The equation simplifies to 퐶: 푥 + 푥 = 푎  in case the centre of the circle coincides with the origin of the coordinate system. 
We can also represent C in the Polar Coordinate System by using the well-known substitution: 

푥 = 푎 cos휃 
푥 = 푎 sin휃 

which readily gives: 

푎 =  푥 + 푥  

휃 = tan
푥
푥  

As we can see, the curve C is a summation of sine and cosine components. 
As can be seen from Fig. 5, we have started with initial conditions as: 
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a) 푥  not coinciding with desired location.  
b) 푥  coinciding with the desired location.  

 
Fig. 5: Components of the desired and actual trajectory. 

It can be seen that the position tracking of 푥  as well as 푥  coincide with the desired positions in a very short time after the 
simulation starts. Now, putting it all together, we can see our model in action by referring to Fig. 6. The desired curve C is shown in 
solid red line. As shown by the black coloured dash-dotted lines, we start with an initial location of the tool point far away from the 
desired path. It aligns with the desired path quickly and traces it. 

 
Fig. 6: Complete Trajectory: Ideal and tracked. 

For the sake of completeness, we also include the speed tracking of tool point. Barring a few minor digressions, the speed tracking 
also follows and nicely aligns with the desired speed curve as shown in Fig. 7 

 

Fig. 7: Speed tracking of end-effector. 
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V. CONCLUSIONS 
The main objective of the study was to provide a simple model of a robotic manipulator and describe its application in minimally 
invasive surgeries. In conclusion, we have seen 

A. A two-link robotic manipulator has been chosen as our plant and its dynamic governing equations have been derived using the 
Lagrangian Formulation. 

B. A novel framework of incorporating a sensor in the end effector has been described. 
C. The feedback obtained from the sensors and its consequent use has been detailed. 
D. Controller relevant to the sensor at the end effector has been chosen and its suitability for our plant has been shown. 
E. Trajectory tracking and speed-tracking of the end-effector has been discussed. 

VI. FUTURE WORK 
A. The model can be extended for robotic chain consisting of a sufficiently large chain length to which gives extra degrees of 

freedom i.e., dexterity to effectively and efficiently gain access to required regions of the body during the surgery. 
B. Haptic feedback model for the sense of touch can be incorporated. 
C. Better control systems can be designed which make use of the progress being made in the fields of Neural Networks and 

Artificial Intelligence etc. 
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