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Abstract: In this paper, degree of an egde and total degree of an edge in a fuzzy soft graph is introduced, edge regular fuzzy soft 
graphs, and totally edge regular fuzzy soft graphs are also introduced . Theorems for edge regular fuzzy soft graphs and totally 
edge regular fuzzy soft graphs are introduced. A necessary condition under which they are equivalent is provided. Some 
properties of edge regular fuzzy soft graphs and totally edge regular fuzzy soft graphs are studied. 
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I. INTRODUCTION 
In 1736, Euler first introduced the concept of graph theory. In the history of mathematics, the solution given by Euler of the well-
known Konigsberg bridge problem is considered to be the first theorem of graph theory. The graph theory is a very useful tool for 
solving combinatorial problems in different areas such as operations research, optimization, topology, geometry, number theory, 
algebra and computer science. Fuzzy set theory, introduced by Zadeh in 1965 is a mathematical tool for handling uncertainties like 
vagueness, ambiguity and imprecision in linguistic variables [12]. Research on theory of fuzzy sets has been witnessing an 
exponential growth; both within mathematics and in its application. Fuzzy set theory has emerged as a potential area of 
interdisciplinary research and fuzzy graph theory is of recent interest. The first definition of fuzzy graph was introduced by 
Haufmann in 1973, based on Zadeh’s fuzzy relations in 1971. In 1975, Rosenfeld introduced the concept of fuzzy graphs [9]. 
Nagoor Gani and Latha[26] introduced irregular fuzzy graphs. The fuzzy relations between fuzzy sets were also considered by 
Rosenfeld and he developed the structure of fuzzy graphs using fuzzy relations, obtaining analogs of several graph theoretical 
concepts. During the same time Yeh and Bang have also introduced various connectedness concepts in fuzzy graph [11]. Now, 
fuzzy graphs have been witnessing a tremendous growth and finds application in many branches of engineering and technology. A. 
NagoorGani and K. Radha introduced the concept of regular fuzzy graphs in 2008 [5]. In 1999, D.Molodtsov[12] introduced the 
notion of soft set theory to solve imprecise problems in economics, engineering and environment. He has shown several applications 
of this theory in solving many practical problems. There are many theories like theory of probability, theory of fuzzy sets, theory of 
intuitionistic fuzzy sets, theory of rough sets, etc. which can be considered as mathematical tools to deal with uncertainties. But all 
these theories have their own inherent difficulties. The theory of probabilities can deal only with possibilities. The most appropriate 
theory to deal with uncertainties is the theory of fuzzy sets, developed by Zadeh[9] in 1965. But it has an inherent difficulty to set 
the membership function in each particular r cases. Also the theory of intuitionistic fuzzy set is more generalized concept than the 
theory of fuzzy set, but also there have same difficulties. The soft set theory is free from above difficulties. In 2001, P.K.Maji, 
A.R.Roy,R.Biswas [20, 21] initiated the concept of fuzzy soft sets which is a combination of fuzzy set and soft set. In fact, the 
notion of fuzzy soft set is more generalized than that of fuzzy set and soft set. Muhammad Akram and Saira Nawaz [25] introduced 
more concepts on fuzzy soft graphs. K. Radha and N. Kumaravel [26] introduced new concepts based on edge regular fuzzy soft 
graph. 

II. PRELIMINARIES 
1) Definition 2.1: A graph G is called regular if every vertex is adjacent only to vertices having the same degree. 
2) Definition 2.2: A graph G is called edge regular if every edge is adjacent only to edges having the same degree. 
3) Definition 2.3: A fuzzy graph G is a pair of functions G:(σ,μ) where σ is a fuzzy Sub set of a non empty set V and μ is a 

symmetric fuzzy relation on σ . The underlying crisp graph of G:(σ,μ) is denoted by G*(V,E) where E ⊆V×V. A fuzzy graph G 
is complete if μ(uv) = σ(u) ∧σ(v) for all u, v∈ V where uv denotes the edge between u and v. 

4) Definition 2.4: A fuzzy graph H : (t, u) is called a partial fuzzy sub graph of G : (s, μ) if t(u) ≤ s(u) for every u and u (u, v) ≤ 
μ(u, v) for every u and v . In particular we call a partial fuzzy sub graph H : (t, u) a fuzzy sub graph of G : (s, μ ) if t (u) = s(u) 
for every u in t * and u (u, v) = μ(u, v) for every arc (u, v) in u*. 
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5) Definition 2.5: Let U be a nonempty finite set of objects called Universe and let E be a nonempty set called parameters. An 
ordered pair (F,E) is said to be a Soft set over U, where F is a mapping from E into the set of all subsets of the set U. That is F: 
E → P (U). The set of all Soft sets over U is denoted by S (U) 

6) Definition 2.6: Let (F, A) be a soft set over V. Then (F, A) is said to be a Soft graph of G if the sub graph induced by F(x) in G, 
F%(x) is a connected sub graph of G for all x belongs to A. The set of all soft graph of G is denoted by SG(G). 

7) Definition 2.7: Let V be a non empty set of vertices , E be the set of parameters and A⊆ E . Also let 
a) ρ : A → F(V) (collection of all fuzzy subsets in V ) 

e ↦ ρ (e) = ρe .(say) and 
ρe : V→ [0,1] 
xi ↦ ρe (xi) 
(A, ρ ) is a fuzzy soft vertex. 

b) μ : A → F(V x V) (collection of all fuzzy subsets in E ) 
e ↦ μ (e) = μe .(say) and 
μe : V x V → [0,1] 
( xi , xj )↦ μe ( xi , xj ) 
(A, μ ) is a fuzzy soft edge. 

Then ((A, ρ),(A,μ)) is called fuzzy soft graph if and only if μe ( xi , xj ) ≤ ρe (xi) ∧ ρe (xj) for all e belongs to A. 
Which is also equivalent to the definition that, 
A fuzzy soft graph GA,V = (G*, F, K ,A) is a 4- tuple such that, 

i) G* = (V ,E) is a simple graph 
ii) A is tha set of parameters 

iii) (F,A) is a fuzzy soft set over V 
iv) (F(e), K(e)) is a fuzzy soft set over E 
v) (F(e),K(e)) is a fuzzy subgraph of G* for all e belongs to A i.e) 

K(e) (xy) ≤ min { F(e) (x) ,K(e) (y) ) for all e∈A x,y ∈ V. the 
fuzzy graph ( F(e) ,K(e)) is denoted by HA,V (e). 
8) Definition 2.8: Let GA,V = ((A, ρ),(A,μ)) be a fuzzy soft graph, then the order of GA,V is defined as: O(GA,V) = ∑e∈A (∑xi∈A ρe 

(xi) )) . 
9) Definition 2.9: Let GA,V = ((A, ρ),(A,μ)) be a fuzzy soft graph. Then the size of GA,V  is defined as: S (GA,V) = ∑e∈A (∑u≠v  μe  ( 

xi , xj ) )) 
10) Definition 2.10: Let GA,V =  ((A, ρ),(A,μ))be a fuzzy soft graph. The degree of a vertex u is defined as dGA,V  (u)= ∑e∈A (∑u≠v μe 

( u , v) ) 
11) Definition: 2.11 Let G* = (V ,E) be a graph and let e = uv ∈ E . Then the degree of an edge uv is defined by dG* (uv) = dG* (u) + 

dG* (v)-2. 
12) Definition: 2.12 Let G:(σ,μ) be a graph on G* = (V ,E) and let e = uv ∈ E . Then the degree of an edge uv is defined by dG (uv) 

= dG  (u) + dG (v) – 2 μ( uv ). This is also equivalent to dG (uv) = {∑w≠v μ( uw )} + { ∑w≠u μ( wv ) }. 
13) Definition: 2.13 Let G:(σ,μ) be a graph on G* = (V ,E) and let e = uv ∈ E . Then the total degree of an edge uv is defined by tdG 

(uv) = dG (u) + dG (v) – μ( uv ). This is also equivalent to tdG (uv) = dG (u)v + μ( uv ). 
14) Theorem : 2.14 Let G: (σ, μ) be a fuzzy graph on G*: (V, E). If G is both edge regular and totally edge regular, then G is a 

regular fuzzy graph if and only if G* is a regular graph. 
 

III. DEGREE OF AN EDGE AND TOTAL DEGREE OF AN EDGE IN FUZZY SOFT GRAPH 
1) Definition 3.1: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph and let e = uv ∈ E . Then the degree of an edge uv is defined by 

dGA,V (uv) = dGA,V (u) + dGA,V (v) – 2 (∑e∈A μe (uv ) ) . This is also equivalent to dGA,V (uv) = { ∑e∈A ∑w≠v μe ( uw ) } + 
{∑e∈A ∑w≠u μe ( wv ) }. 

Minimum edge degree of GA,V = δE GA,V = ∧ { dGA,V (uv) , for all uv ∈ E }. 
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Maximum edge degree of GA,V = ΔE GA,V = ∨{ dGA,V (uv) , for all uv ∈ E }. 
2) Definition 3.2: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph and let e = uv ∈ E . Then the total degree of an edge uv is defined 

by tdGA,V (uv) = dGA,V (u) + dGA,V (v) – (∑e∈A μe (uv ) ). This is also equivalent to tdGA,V (uv) = { ∑e∈A ∑w≠v μe ( uw ) } + { 
∑e∈A ∑w≠u μe ( wv ) }.+ {∑e∈A μe ( uv ) }. 

Which implies tdGA,V (uv) = dGA,V (uv) + ∑e∈A μe ( uv ) . 
Minimum total edge degree of GA,V = δE GA,V = ∧ { tdGA,V (uv) , for all uv ∈ E }. 
Maximum total edge degree of GA,V = ΔE GA,V = ∨{ tdGA,V (uv) , for all uv ∈ E }. 
3) Example 3.3 
Consider the following fuzzy soft graph 
F(e1) = { X1 | 0.2 , X2 | 0.3 , X3 | 0.4 } 
F(e2) = { X1 | 0.3 , X2 | 0.4 , X3 | 0.5 } 
F(e3) = { X1 | 0.5 , X2 | 0.7 , X3 | 0.8 } 
and 
K(e1) = { X1 X2 | 0.1 , X1 X3 | 0.1 , X2X3 | 0.3 } 
K(e2) = { X1 X2 | 0.3 , X1 X3 | 0.3 , X2X3 | 0.4 } 
K(e3) = { X1 X2 | 0. 2 , X1 X3 | 0.5 , X2X3 | 0.7} 

 

 
dGA,V  (x1) = 0.2 + 0.6 + 0.7 = 1.5. 
dGA,V  (x2) = 0.4 + 0.7 + 0.9 = 2.0. 
Now, 
dGA,V (uv) = dGA,V (u) + dGA,V (v) – 2 (∑e∈A μe (uv )) = 1.5 + 2.0 – 2 ( 0.1 + 0.3 + 0. 2 ) = 2.3. 
Also, 
dGA,V (uv) = { ∑e∈A ∑w≠v μe ( uw ) } + {∑e∈A ∑w≠u μe ( wv ) }= ( 0.3 + 0.4 +0.7 ) + ( 0.1 + 0.3 + 0.5 ) = 2.3. 
Now, 
tdGA,V (uv) = dGA,V (u) + dGA,V (v) – (∑e∈A μe (uv )) = 1.5 + 2.0 – ( 0.1 + 0.3 + 0. 2 ) = 2.9. 
Also, 
tdGA,V (uv) = dGA,V (uv) + ∑e∈A μe ( uv ) = 2.3 + 0.6 = 2.9. 
4) Theorem : 3.4 Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G*: ( V , E ) . Then ∑uv∈E dGA,V (uv) = ∑e∈A ∑uv∈E dG*(uv) 

μe( uv ). 
5) Theorem : 3.5 Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G*: ( V , E ) . Then ∑uv∈E tdGA,V (uv) = ∑e∈A ∑uv∈E dG*(uv) 

μe( uv ) + S(GA,V). 
Proof: 
The Size of GA,V = S(GA,V) = ∑uv∈E ∑e∈A μe( uv ) . 
Now, 

tdGA,V (uv) = dGA,V (uv) + ∑e∈A μe ( uv ) . 
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⇒∑uv∈E tdGA,V (uv) = dGA,V (uv) +∑uv∈E ∑e∈A μe( uv ) . 

⇒∑uv∈E tdGA,V (uv) = dGA,V (uv) + S(GA,V). 

⇒∑uv∈E tdGA,V (uv) = ∑e∈A∑uv∈E dG*(uv) μe( uv )+ S(GA,V). ( By theorem 3.4 ). 
 
 

IV. EDGE REGULAR FUZZY SOFT GRAPH AND TOTALLY EDGE REGULAR FUZZY SOFT GRAPH 
1) Definition: 4.1: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) .Then GA,V is said to be an edge regular fuzzy soft 

graph if HA,V(e) is an edge regular fuzzy graph for all e ∈A. If HA,V (e)is an edge regular fuzzy graph of degree r for all e∈A; 
then GA,V is a r - edge regular fuzzy soft graph. 

2) Definition: 4.2 : Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) .Then GA,V is said to be a totally edge regular 
fuzzy soft graph if HA,V(e) is an totally edge regular fuzzy graph for all e ∈A. If HA,V (e) is an totally edge regular fuzzy graph 
of degree r for all e∈A; then GA,V is a r - totally edge regular fuzzy soft graph. 

Example : 2 
Consider tha following Example 
F(e1) = { X1 | 0.2 , X2 | 0.3 , X3 | 0.4 } 
F(e2) = { X1 | 0.3 , X2 | 0.4 , X3 | 0.5 } 
F(e3) = { X1 | 0.5 , X2 | 0.7 , X3 | 0.8 } 
and 
K(e1) = { X1 X2 | 0.1 , X1 X3 | 0.1 , X2X3 | 0.1 } 
K(e2) = { X1 X2 | 0.1 , X1 X3 | 0.1 , X2X3 | 0.1 } 
K(e3) = { X1 X2 | 0.1 , X1 X3 | 0.1 , X2X3 | 0.1} 

 
Which is an example of both edge regular and totally edge regualar fuzzy soft graph. 
Note: 
a) GA,V is r- edge regular fuzzy soft graph iff its minimum edge degree and maximum edge degree are equal to r. 
b) GA,V is r- totally edge regular fuzzy soft graph iff its minimum total edge degree and maximum total edge degree are equal to r. 

 
3) Theorem : 4.3 Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . K is a constant function iff the following conditions 

are equivalent. 
i) GA,V is an edge regular fuzzy soft graph. 
ii) GA,V is a totally edge regular fuzzy soft graph. 

Proof: 

Suppose K is a constant function , K(e)(uv) = c, a constant for all uv∈E and e∈A. 
⇒∑e∈A μe( uv ) = c for all uv∈E and e∈A. 
Assume that GA,V is a k- edge regular fuzzy soft graph. 
⇒ dGA,V (uv) = k , for all uv∈E. 
Now, 
tdGA,V (uv) = dGA,V (uv) + ∑e∈A μe ( uv ) . 
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⇒ tdGA,V (uv) = k + ∑e∈A μe ( uv ) for all uv∈E. 
⇒ tdGA,V (uv) = k + c for all uv∈E. 
⇒ GA,V is a (k+c) totally edge regular fuzzy soft graph. 
Thus (i) ⇒ (ii) is proved. 
Now, 
Assume that GA,V is a r- totally edge regular fuzzy soft graph. 
⇒ tdGA,V (uv) = r , for all uv∈E. 
⇒dGA,V (uv) + ∑e∈A μe ( uv ) .= r , for all uv∈E. 
⇒dGA,V (uv) + c .= r , for all uv∈E. 
⇒dGA,V (uv) .= ( r – c ) , for all uv∈E. 
⇒ GA,V is ( r-c ) edge regular fuzzy soft graph. 
Thus (ii) ⇒ (i) is proved. 
Conversely, 
Suppose (i) and (ii) are equivalent. 
1) Claim: K is a constant function. 
Suppose K is not a constant function, K(e)(uv) ≠ c, a constant for all uv∈E and e∈A. 
⇒∑e∈A μe( uv ) ≠ c for all uv∈E and e∈A.. 
⇒∑e∈A μe( uv ) ≠ ∑e∈A μe( xy ) for some uv , xy∈E and e∈A.. 
⇒ μe( uv ) ≠ μe( xy ) for atleast one pair of edges uv , xy ∈E. 
Let GA,V be a k- edge regular fuzzy soft graph. 
⇒ dGA,V (uv) = dGA,V (xy ) = k , for all uv∈E. 
Now, 
tdGA,V (uv) = dGA,V (uv) + ∑e∈A μe ( uv ) . 
⇒tdGA,V (uv) = k + ∑e∈A μe ( uv ) . 
and 
tdGA,V (xy) = dGA,V (xy) + ∑e∈A μe ( xy ) . 
⇒tdGA,V (xy) = k + ∑e∈A μe ( xy ) . 
Since ∑e∈A μe( uv ) ≠ c for all uv∈E and e∈A, We have 
tdGA,V (uv) ≠ tdGA,V (xy) , Which is a contradiction. 
Now, 
Let GA,V be a k- totally edge regular fuzzy soft graph. 
⇒ tdGA,V (uv) = tdGA,V (xy ) = k , for all uv∈E. 
⇒ dGA,V (uv) + ∑e∈A μe ( uv ) = dGA,V (xy) + ∑e∈A μe ( xy ) 
Since ∑e∈A μe( uv ) ≠ c for all uv∈E and e∈A,We have, 
dGA,V (uv) - dGA,V (xy) = ∑e∈A μe ( xy ) - ∑e∈A μe ( uv ) ≠ 0. 
⇒dGA,V (uv) ≠ tdGA,V (xy) , Which is a contradiction. 
Hence K is a constant function. 
4) Theorem : 4.4: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . If GA,V is both edge regular and totally edge 

regular , then K is a constant function. 
Proof: 
Let GA,V be a k-edge regular and r totally edge regular fuzzy soft graph. 
⇒tdGA,V (uv) = k , for all uv∈E and tdGA,V (uv) = r , for all uv∈E. 
Now, 
tdGA,V (uv) = dGA,V (uv) + ∑e∈A μe ( uv ) . 
⇒ r = k + ∑e∈A μe( uv ) for all uv∈E. 
⇒ ∑e∈A μe( uv ) = r - k =c , a constant for all uv∈E. 
Hence K is constant fuction. 
5) Note:4.5 
Converse of the above theorem is not true. 
Consider the following example, 
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F(e1) = { X1 | 0.5 , X2 | 0.6 , X3 | 0.7,  X4 | 0.8 } 
F(e2) = { X1 | 0.3 , X2 | 0.4 , X3 | 0.7, X4 | 0.8 } 
F(e3) = { X1 | 0.5 , X2 | 0.6 , X3 | 0.3, X4 | 0.2 } 
F(e4) = { X1 | 0.1 , X2 | 0.2 , X3 | 0.3, X4 | 0.4 } 
and 
K(e1) ={ X1 X2 | 0.1 , X2 X4 | 0.1 , X3X4 | 0.1, X1X3 | 0.1 , X1X4 | 0.1 } 
K(e2) = ={ X1 X2 | 0.1 , X2 X4 | 0.1 , X3X4 | 0.1, X1X3 | 0.1 , X1X4 | 0.1 } 
K(e3) = ={ X1 X2 | 0.1 , X2 X4 | 0.1 , X3X4 | 0.1, X1X3 | 0.1 , X1X4 | 0.1 } 
K(e4) = ={ X1 X2 | 0.1 , X2 X4 | 0.1 , X3X4 | 0.1, X1X3 | 0.1 , X1X4 | 0.1 } 

 

 
Here, 
K is a constant function for all e belongs to A. But it is not both edge regular and totally edge regular fuzzy soft graph. 
6) Theorem: 4.6 Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . Let GA,V  is both edge regular and totally edge 

regular . Then GA,V is a regular fuzzy soft graph iff G* is a regular graph. 
Proof 
Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . 
Let GA,V is both edge regular and totally edge regular fuzzy soft graph. 
Assume that GA,V is a regular fuzzy soft graph. 

⇒ HA,V (e) is a regular fuzzy graph. 
By theorem 2.14 , We have HA,V (e) is a regular fuzzy graph iff G* is a regular graph for all e∈A. 

⇒ GA,V (e) is a regular fuzzy soft graph. 
7) Remark:4.7 Converse of the above theorem is not true. 
Consider the Example : 1 
Here , G* is regular but GA,V is neither edge regular nor totally edge regular fuzzy soft graph. 
8) Theorem : 4.8 
Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . Let K is a constant function. . If GA,V is k- regular fuzzy soft graph  
then GA,V is edge regular fuzzy soft graph. 
Proof 
Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . 
Assume that K is a constant function. 
Also assume that GA,V is k- regular fuzzy soft graph. 
⇒ dGA,V (u) = k , for all u∈V. 
Since K is a constant function, K(e)(uv) = c, a constant for all uv∈E and e∈A. 
⇒∑e∈A μe( uv ) = c for all uv∈E and e∈A. 
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Now, 
dGA,V (uv) = dGA,V (u) + dGA,V (v) – 2 (∑e∈A μe (uv )) 
⇒ dGA,V (uv) = k + k – 2 c for all uv∈E 
⇒ dGA,V (uv) = 2k – 2 c for all uv∈E 
⇒ dGA,V (uv) = 2( k – c ) = r (say) for all uv∈E 
⇒ GA,V is edge regular fuzzy soft graph. 
9) Theorem : 4.9 Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . Let K is a constant function. . If GA,V is k- regular 

fuzzy soft graph then GA,V is totally edge regular fuzzy soft graph. 
Proof 
Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . 
Assume that K is a constant function. 
Also assume that GA,V is k- regular fuzzy soft graph. 
⇒ dGA,V (u) = k , for all u∈V. 
Since K is a constant function, K(e)(uv) = c, a constant for all uv∈E and e∈A. 
⇒∑e∈A μe( uv ) = c for all uv∈E and e∈A. 
Now, 
tdGA,V (uv) = dGA,V (u) + dGA,V (v) – (∑e∈A μe (uv )) 
⇒t dGA,V (uv) = k + k – c for all uv∈E 
⇒t dGA,V (uv) = 2k – c for all uv∈E 
⇒ tdGA,V (uv) = ( 2k – c ) = r (say) for all uv∈E 
⇒ GA,V is a totally edge regular fuzzy soft graph. 
10) Theorem: 4.10: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . K is a constant function iff the following 

conditions are equivalent. 
a) GA,V is a regular fuzzy soft graph. 
b) GA,V is an edge regular fuzzy soft graph. 
c) GA,V is a totally edge regular fuzzy soft graph. 
11) Theorem : 4.11: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) and K is a constant function. If GA,V is an edge 

regular fuzzy soft graph iff G* is a edge regular graph. 
a) Proof: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . 
let K be a constant function. 
Assume that GA,V is an edge regular fuzzy soft graph. 
Since K is a constant function, K(e)(uv) = c, a constant for all uv∈E and e∈A. 
⇒∑e∈A μe( uv ) = c for all uv∈E and e∈A. 
b) Claim : G* is a edge regular graph.. 
Suppose G* is a not an edge regular graph, dG* (uv) ≠ dG* (xy) for some uv , xy ∈E. 
Now, 
dGA,V (uv) = { ∑e∈A ∑w≠v μe ( uw ) } + {∑e∈A ∑w≠u μe( wv ) } 
⇒ dGA,V (uv) = { ∑w≠v∑e∈A μe( uw ) } + { ∑w≠u∑e∈A μe( wv )} 
⇒ dGA,V (uv) = { ∑w≠v c } + { ∑w≠u∑e∈A c} 
⇒ dGA,V (uv) = c (dG* (u) – 1) + c (dG* (v) – 1) 
⇒ dGA,V (uv) = c (dG* (u) + dG* (v) – 2) 
⇒ dGA,V (uv) = c (dG* (uv )) 
Similarly , dGA,V (xy) = c (dG* (xy)) 
Since dG* (uv) ≠ dG* (xy), we have dGA,V (uv) ≠ dGA,V (xy) which is a contradiction. 
Hence G* is a edge regular graph. 
Conversely, 
Assume that G* is a edge regular graph. 
c) Claim : GA,V is an edge regular fuzzy soft graph. 
Suppose GA,V is a not an edge regular graph, dGA,V (uv) ≠ dGA,V (xy) for some uv , xy ∈E. 
⇒ {∑e∈A∑w≠v μe( uw )}+{∑e∈A ∑w≠u μe( wv ) }≠{∑e∈A ∑x≠z μe( xz )}+{∑e∈A∑z≠y μe( zy)} 
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⇒ {∑w≠v∑e∈A μe( uw )}+{∑w≠u∑e∈A μe( wv ) }≠{∑x≠z∑e∈A μe( xz )}+{∑z≠y∑e∈A μe(zy)} 
⇒ {∑w≠v c}+{∑w≠u c }≠{∑x≠z c}+{∑z≠y c } 
⇒ c (dG* (u) – 1) + c (dG* (v) – 1) ≠ c (dG* (x) – 1) + c (dG* (y) – 1) 
⇒ c (dG* (u) + dG* (v) – 2) ≠ c (dG* (x)+ dG* (y) – 2) 
⇒ c (dG* (uv)) ≠ c (dG* (xy)) 
⇒ dG* (uv) ≠ (dG* (xy) 
⇒ G* is not an edge regular graph , which is a contradiction. 
Hence GA,V is an edge regular graph. 
12) Theorem : 4.12: Let GA,V = (G*, F, K ,A) be a k- regular fuzzy soft graph on G* = (V ,E) . Then GA,V is an edge regular fuzzy soft 

graph iff K is a constant function. 
a) Proof: Let GA,V = (G*, F, K ,A) be a fuzzy soft graph on G* = (V ,E) . 
Assume that GA,V is k- regular fuzzy soft graph. 
⇒ dGA,V (u) = k , for all u∈V. 
Also assume that K is a constant function. 
⇒ K(e)(uv) = c, a constant for all uv ∈E and e∈A. 
⇒∑e∈A μe( uv ) = c for all uv ∈E and e∈A. 
b) Claim : GA,V is edge regular fuzzy soft graph. 
W.K.T , dGA,V (uv) = dGA,V (u) + dGA,V (v) – 2 (∑e∈A μe (uv )) 
⇒ dGA,V (uv) = k + k – 2 c for all uv∈E 
⇒ dGA,V (uv) = 2k – 2 c for all uv∈E 
⇒ dGA,V (uv) = 2( k – c ) = r (say) for all uv∈E 
⇒ GA,V is edge regular fuzzy soft graph. 
Conversely , 
Assume that GA,V is edge regular fuzzy soft graph. 
c) Claim: K is a constant function. 
i.e ) To Prove : ∑e∈A μe( uv ) = c for all uv ∈E and e∈A. 
Since GA,V is edge regular fuzzy soft graph , dGA,V (uv) = r for all uv∈E 
⇒ dGA,V (u) + dGA,V (v) – 2 (∑e∈A μe (uv )) = r for all uv∈E 

⇒ k + k – 2 (∑e∈A μe (uv )) = r for all uv∈E 
⇒ (∑e∈A μe (uv )) = ( r – 2k ) / 2 for all uv∈E 
Hence K is a constant function. 

 
V. PROPERTIES OF AN EDGE REGULAR FUZZY SOFT GRAPH 

A. Theorem : 5.1 
Let GA,V = (G*, F, K ,A) be a k – edge regular fuzzy soft graph on G*: ( V , E ) . Then S(GA,V) = qc, where q = |E| and c is a constant. 
1) Proof: Let GA,V = (G*, F, K ,A) be a k – edge regular fuzzy soft graph on G*: ( V , E ). 
The Size of GA,V = S(GA,V) = ∑uv∈E ∑e∈A μe( uv ) . 
Since GA,V = (G*, F, K ,A) is a k – edge regular fuzzy soft graph , K is a constant function. 
⇒ (∑e∈A μe (uv )) = c , for all uv∈E. 
⇒ S(GA,V) = ∑uv∈E c , Where c is a constant. 
⇒ S(GA,V) = qc , where q = |E| and c is a constant. 

 
B. Theorem : 5.2 
Let GA,V = (G*, F, K ,A) be a k – edge regular and r – totally edge fuzzy soft graph on G*: ( V , E ) . Then S(GA,V) = q ( r – k ), where 
q = |E| . 
1) Proof : Let GA,V = (G*, F, K ,A) be a k – edge regular and r – totally edge fuzzy soft graph on G*: ( V , E ) . 
Since GA,V = (G*, F, K ,A) is a k – edge regular edge fuzzy soft graph , dGA,V (uv) = k , for all uv∈V. 
Since GA,V = (G*, F, K ,A) is a r – edge regular edge fuzzy soft graph , tdGA,V (uv) = r , for all uv∈V. 
Now , 
∑uv∈E tdGA,V (uv) = ∑uv∈E dGA,V (uv) + ∑uv∈E ∑e∈A μe( uv ) . 
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⇒∑uv∈E r = ∑uv∈E k + S(GA,V) 
⇒ q r = q k + S(GA,V)  where q = |E| . 
⇒ S(GA,V) = q r - q k   where q = |E| . 
⇒ S(GA,V) = q ( r - k ) where q = |E| . 
a) Proposition : 1 
An Edge regular fuzzy soft graph need not be a totally edge regular fuzzy soft graph. 
Consider the following example , 
F(e1) = { X1 | 0.3 , X2 | 0.2 , X3 | 0.3,  X4 | 0.4 } 
F(e2) = { X1 | 0.5 , X2 | 0.3 , X3 | 0.4, X4 | 0.5 } 
F(e3) = { X1 | 0.7 , X2 | 0.4 , X3 | 0.5, X4 | 0.6 } 
F(e4) = { X1 | 0.9 , X2 | 0.5 , X3 | 0.6, X4 | 0.7 } 
and 
K(e1) ={ X1 X2 | 0.1 , X2 X4 | 0.2 , X3X4 | 0.2, X1X3 | 0.1 , X1X4 | 0.3 } 
K(e2) = ={ X1 X2 | 0.2 , X2 X4 | 0.3 , X3X4 | 0.3, X1X3 | 0.2 , X1X4 | 0.5 } 
K(e3) = ={ X1 X2 | 0.3 , X2 X4 | 0.4 , X3X4 | 0.4, X1X3 | 0.3 , X1X4 | 0.7 } 
K(e4) = ={ X1 X2 | 0.4 , X2 X4 | 0.5 , X3X4 | 0.5, X1X3 | 0.4 , X1X4 | 0.9 } 

 

 
 

 

dGA,V (x1) = 0.2 + 0.4 + 0.6 + 0.8 + 0.3 + 0.5 + 0.7 +0.9 = 4.4. 
dGA,V (x2) = 0.3 + 0.5 +0.7 +0.9 = 2.4. 
dGA,V (x3) = 0.3 + 0.5 +0.7 +0.9 = 2.4. 
dGA,V (x4) = 0.4 + 0.6 + 0.8 + 1.0 + 0.3 + 0.5 +0.7 +0.9 = 5.2. 
Now , 
dGA,V  (x1x2) =  4.4 + 2.4 – 2 (0.1 + 0.2 + 0.3 + 0.4 ) = 4.8. 
dGA,V  (x1x3) =  4.4 + 2.4 – 2 (0.1 + 0.2 + 0.3 + 0.4 ) = 4.8. 
dGA,V  (x1x4) =  4.4 + 5.2 – 2 (0.3 + 0.5 + 0.7 + 0.9 ) = 4.8. 
dGA,V  (x2x4) =  2.4 + 5.2 – 2 (0.2 + 0.3 + 0.4 + 0.5 ) = 4.8. 
dGA,V  (x3x4) =  2.4 + 5.2 – 2 (0.2 + 0.3 + 0.4 + 0.5 ) = 4.8. 
Hence it an edge regular fuzzy soft graph. 
But , 
tdGA,V (x1x2) = dGA,V (x1) + dGA,V (x2) – (∑e∈A μe (x1x2 )). 
⇒ tdGA,V (x1x2) = 4.8 + ( 0.1 + 0.2 + 0.3 + 0.4 ) = 5.8. 
tdGA,V (x1x4) = dGA,V (x1) + dGA,V (x4) – (∑e∈A μe (x1x4 )). 
⇒ tdGA,V (x1x4) = 4.8 + ( 0.3 + 0.5 + 0.7 + 0.9 ) = 7.2. 
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Hence it is not a totally edge regular fuzzy soft graph. 
 
b) Proposition : 2 
A totally edge regular fuzzy soft graph need not be an edge regular fuzzy soft graph. 
Consider the following example , 
F(e1) = { X1 | 0.5 , X2 | 0.1 , X3 | 0.2 } 
F(e2) = { X1 | 0.6 , X2 | 0.2 , X3 | 0.3 } 
F(e3) = { X1 | 0.7 , X2 | 0.3 , X3 | 0.4 } 
and 
K(e1) = { X1 X2 | 0.1 , X1 X3 | 0.2 , X2X3 | 0.1 } 
K(e2) = { X1 X2 | 0.2 , X1 X3 | 0.3 , X2X3 | 0.2 } 
K(e3) = { X1 X2 | 0.3 , X1 X3 | 0.4 , X2X3 | 0.3} 

   
 

dGA,V (x1) = 0.3 + 0.5 + 0.7 = 1.5. 
dGA,V  (x2) = 0.2 + 0.4 +0.6  = 1.2. 
dGA,V  (x3) =  0.3 + 0.5 +0.7 = 1.5. 
Now , 
tdGA,V (x1x2) = 1.5 + 1.2 – (0.1 + 0.2 + 0.3) = 2.1. 
tdGA,V (x1x3) = 1.5 + 1.5 – (0.2 + 0.3 + 0.4 ) = 2.1. 
tdGA,V (x2x3) = 1.2 + 1.5 – 2 ( 0.1 + 0.2 + 0.3) = 2.1. 
Hence it totally edge regular fuzzy soft graph. 
But , 
dGA,V (x1x2) = dGA,V (x1) + dGA,V (x2) – 2(∑e∈A μe (x1x2 )). 
⇒ dGA,V (x1x2) = 1.5 + 1.2 – 2(0.1 + 0.2 + 0.3) = 1.5. 
dGA,V (x1x4) = dGA,V (x1) + dGA,V (x4) – 2(∑e∈A μe (x1x4 )). 
⇒ dGA,V (x1x4) = 1.5 + 1.5 – (0.2 + 0.3 + 0.4 ) = 1.2. 
Hence it is not an edge regular fuzzy soft graph. 
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